Difference between revisions of "1997 AIME Problems/Problem 14"

(Solution)
(Solution)
Line 8: Line 8:
  
 
If <math>\displaystyle \theta=2\pi ik</math>, where k is any constant, the equation reduces to:
 
If <math>\displaystyle \theta=2\pi ik</math>, where k is any constant, the equation reduces to:
\begin{eqnarray*}
+
<math>\begin{eqnarray*}
e^{2\pi ik}&=&\cos(2\pi k)+i\sin(2\pi k)
+
e^{2\pi ik}&=&\cos(2\pi k)+i\sin(2\pi k)\\
&=&1+0i
+
&=&1+0i\\
&=&1+0
+
&=&1+0\\
&=&1
+
&=&1\\
\end{eqnarray*}
+
z^{1997}-1&=&0\\
 +
z^{1997}&=&1\\
 +
z^{1997}&=&e^{2\pi ik}\\
 +
z&=&e^{\frac{2\pi ik}{1997}}
 +
\end{eqnarray*}<math>
  
 
== See also ==
 
== See also ==
* [[1997 AIME Problems]]
+
* [[1997 AIME Problems]]</math>

Revision as of 20:09, 7 March 2007

Problem

Let $\displaystyle v$ and $\displaystyle w$ be distinct, randomly chosen roots of the equation $\displaystyle z^{1997}-1=0$. Let $\displaystyle \frac{m}{n}$ be the probability that $\displaystyle\sqrt{2+\sqrt{3}}\le\left|v+w\right|$, where $\displaystyle m$ and $\displaystyle n$ are relatively prime positive integers. Find $\displaystyle m+n$.

Solution

The solution requires the use of Euler's formula:

$\displaystyle e^{i\theta}=\cos(\theta)+i\sin(\theta)$

If $\displaystyle \theta=2\pi ik$, where k is any constant, the equation reduces to: $\begin{eqnarray*} e^{2\pi ik}&=&\cos(2\pi k)+i\sin(2\pi k)\\ &=&1+0i\\ &=&1+0\\ &=&1\\ z^{1997}-1&=&0\\ z^{1997}&=&1\\ z^{1997}&=&e^{2\pi ik}\\ z&=&e^{\frac{2\pi ik}{1997}} \end{eqnarray*}<math>

== See also ==

  • [[1997 AIME Problems]]$ (Error compiling LaTeX. Unknown error_msg)