Difference between revisions of "1997 PMWC Problems/Problem T1"

(See also)
Line 7: Line 7:
 
Triangles UWQ, PUY, UWX, and UXY are all right triangles with side lengths 1, <math>\sqrt{3}</math>, and 2. Thus <math>[UWXY]=\sqrt{3}</math> and <math>[PQR]=\frac{9}{4}\sqrt{3}</math>. <math>\frac{[UWXY]}{[PQR]}=\frac{1}{\frac{9}{4}}=\boxed{\frac{4}{9}}</math>
 
Triangles UWQ, PUY, UWX, and UXY are all right triangles with side lengths 1, <math>\sqrt{3}</math>, and 2. Thus <math>[UWXY]=\sqrt{3}</math> and <math>[PQR]=\frac{9}{4}\sqrt{3}</math>. <math>\frac{[UWXY]}{[PQR]}=\frac{1}{\frac{9}{4}}=\boxed{\frac{4}{9}}</math>
  
==See also==
+
==See Also==
 
{{PMWC box|year=1997|num-b=I15|num-a=T2}}
 
{{PMWC box|year=1997|num-b=I15|num-a=T2}}
 +
 +
[[Category:Introductory Geometry Problems]]

Revision as of 16:06, 15 May 2012

Problem

Let $PQR$ be an equilateral triangle with sides of length three units. $U$, $V$, $W$, $X$, $Y$, and $Z$ divide the sides into lengths of one unit. Find the ratio of the area of the shaded quadrilateral $UWXY$ to the area of the triangle $PQR$.

1997 PMWC team 1.png

Solution

Triangles UWQ, PUY, UWX, and UXY are all right triangles with side lengths 1, $\sqrt{3}$, and 2. Thus $[UWXY]=\sqrt{3}$ and $[PQR]=\frac{9}{4}\sqrt{3}$. $\frac{[UWXY]}{[PQR]}=\frac{1}{\frac{9}{4}}=\boxed{\frac{4}{9}}$

See Also

1997 PMWC (Problems)
Preceded by
Problem I15
Followed by
Problem T2
I: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T: 1 2 3 4 5 6 7 8 9 10