Difference between revisions of "2001 AMC 12 Problems/Problem 5"

(Solution)
(Solution)
Line 11: Line 11:
 
Therefore the answer is <math>\boxed{\text{(D)} \dfrac{10000!}{2^{5000} \cdot 5000!}}</math>.
 
Therefore the answer is <math>\boxed{\text{(D)} \dfrac{10000!}{2^{5000} \cdot 5000!}}</math>.
  
Solution 2(Make the problem easier)
+
==Solution 2(making the problem easier)==
  
If you did not see the pattern.
+
If you did not see the pattern, then we may solve a easier problem.
  
then solve a easier problem
 
 
What is the product of all positive odd integers less than <math>10</math>?
 
What is the product of all positive odd integers less than <math>10</math>?
  
1(3)(5)(7)(9) = 945
+
1(3)(5)(7)(9) = 945.
we had
+
 
 +
Originally, we had
 
<math>\text{(A)}\ \dfrac{10000!}{(5000!)^2}\qquad \text{(B)}\ \dfrac{10000!}{2^{5000}}\qquad
 
<math>\text{(A)}\ \dfrac{10000!}{(5000!)^2}\qquad \text{(B)}\ \dfrac{10000!}{2^{5000}}\qquad
 
\text{(C)}\ \dfrac{9999!}{2^{5000}}\qquad \text{(D)}\ \dfrac{10000!}{2^{5000} \cdot 5000!}\qquad
 
\text{(C)}\ \dfrac{9999!}{2^{5000}}\qquad \text{(D)}\ \dfrac{10000!}{2^{5000} \cdot 5000!}\qquad
Line 30: Line 30:
  
 
which expression equals 945  
 
which expression equals 945  
 +
 
<math>\text{(A)}\ \dfrac{10!}{(5!)^2}</math> = 252 way too small  
 
<math>\text{(A)}\ \dfrac{10!}{(5!)^2}</math> = 252 way too small  
<math>\text{(B)}\ \dfrac{10!}{2^{5}}</math> = is way too big 113400
+
 
 +
<math>\text{(B)}\ \dfrac{10!}{2^{5}}</math> = is way too big, 113400
 +
 
 
<math>\text{(C)}\ \dfrac{9!}{2^{5}}</math> = is just 113400 divided by 10(11340), so still too big  
 
<math>\text{(C)}\ \dfrac{9!}{2^{5}}</math> = is just 113400 divided by 10(11340), so still too big  
 +
 
<math>\text{(D)}\ \dfrac{10!}{2^{5} \cdot 5!}</math> = 113400/120= 945, just perfect
 
<math>\text{(D)}\ \dfrac{10!}{2^{5} \cdot 5!}</math> = 113400/120= 945, just perfect
 +
 
<math>\text{(E)}\ \dfrac{5!}{2^{5}}</math> = 3.75 or just too small
 
<math>\text{(E)}\ \dfrac{5!}{2^{5}}</math> = 3.75 or just too small
  
 
So D is equal to 945, thus the answer is D
 
So D is equal to 945, thus the answer is D
 
Feel Free to edit, I am still pretty new to this
 
  
 
== See Also ==
 
== See Also ==
 
{{AMC12 box|year=2001|num-b=4|num-a=6}}
 
{{AMC12 box|year=2001|num-b=4|num-a=6}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 03:18, 17 June 2023

Problem

What is the product of all positive odd integers less than $10000$?

$\text{(A)}\ \dfrac{10000!}{(5000!)^2}\qquad \text{(B)}\ \dfrac{10000!}{2^{5000}}\qquad \text{(C)}\ \dfrac{9999!}{2^{5000}}\qquad \text{(D)}\ \dfrac{10000!}{2^{5000} \cdot 5000!}\qquad \text{(E)}\ \dfrac{5000!}{2^{5000}}$

Solution

$1 \cdot 3 \cdot 5 \cdots 9999 = \dfrac{1 \cdot 2 \cdot 3 \cdot 4 \cdots 10000}{2 \cdot 4 \cdot 6 \cdots 10000}= \dfrac{10000!}{2^{5000} \cdot 1 \cdot 2 \cdot 3 \cdots 5000}= \dfrac{10000!}{2^{5000}\cdot5000!}$

Therefore the answer is $\boxed{\text{(D)} \dfrac{10000!}{2^{5000} \cdot 5000!}}$.

Solution 2(making the problem easier)

If you did not see the pattern, then we may solve a easier problem.

What is the product of all positive odd integers less than $10$?

1(3)(5)(7)(9) = 945.

Originally, we had $\text{(A)}\ \dfrac{10000!}{(5000!)^2}\qquad \text{(B)}\ \dfrac{10000!}{2^{5000}}\qquad \text{(C)}\ \dfrac{9999!}{2^{5000}}\qquad \text{(D)}\ \dfrac{10000!}{2^{5000} \cdot 5000!}\qquad \text{(E)}\ \dfrac{5000!}{2^{5000}}$

but now we have $\text{(A)}\ \dfrac{10!}{(5!)^2}\qquad \text{(B)}\ \dfrac{10!}{2^{5}}\qquad \text{(C)}\ \dfrac{9!}{2^{5}}\qquad \text{(D)}\ \dfrac{10!}{2^{5} \cdot 5!}\qquad \text{(E)}\ \dfrac{5!}{2^{5}}$

which expression equals 945

$\text{(A)}\ \dfrac{10!}{(5!)^2}$ = 252 way too small

$\text{(B)}\ \dfrac{10!}{2^{5}}$ = is way too big, 113400

$\text{(C)}\ \dfrac{9!}{2^{5}}$ = is just 113400 divided by 10(11340), so still too big

$\text{(D)}\ \dfrac{10!}{2^{5} \cdot 5!}$ = 113400/120= 945, just perfect

$\text{(E)}\ \dfrac{5!}{2^{5}}$ = 3.75 or just too small

So D is equal to 945, thus the answer is D

See Also

2001 AMC 12 (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png