Difference between revisions of "2003 AIME I Problems/Problem 12"

(See also)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
In convex quadrilateral <math> ABCD, \angle A \cong \angle C, AB = CD = 180, </math> and <math> AD \neq BC. </math> The perimeter of <math> ABCD </math> is 640. Find <math> \lfloor 1000 \cos A \rfloor. </math> (The notation <math> \lfloor x \rfloor </math> means the greatest integer that is less than or equal to <math> x. </math>)
+
In [[convex]] [[quadrilateral]] <math> ABCD, \angle A \cong \angle C, AB = CD = 180, </math> and <math> AD \neq BC. </math> The [[perimeter]] of <math> ABCD </math> is 640. Find <math> \lfloor 1000 \cos A \rfloor. </math> (The notation <math> \lfloor x \rfloor </math> means the greatest [[integer]] that is less than or equal to <math> x. </math>)
  
 
== Solution ==
 
== Solution ==
 +
Let $AD = x$ so $BC = 640 - 360 - x = 280 - x$.  Let $BD = d$ so by the [[Law of Cosines]] in $\triangle ABD$ at [[angle]] $A$ and in $\triangle BCD$ at angle $C$,
 +
$180^2 + x^2 - 2\cdot180 \cdot x \cdot \cos A = d^2 = 180^2 + (280 - x)^2 - 2\cdot180\cdot(280 - x) \cdot \cos A$.  Then
 +
$x^2 - 360x\cos A = (280 -x)^2 -360(280 - x)\cos A$ and grouping the $\cos A$ terms gives
 +
360(280 - 2x)\cos A = 280(280 - 2x)$.
  
{{solution}}
+
Since $x \neq 280 - x$, $280 - 2x \neq 0$ and thus
 +
$360\cos A = 280$ so $\cos A = \frac{7}{9} = 0.7777\ldots$ and so $\lfloor 1000\cos A\rfloor = 777$.
  
 
== See also ==
 
== See also ==
Line 10: Line 15:
 
* [[2003 AIME I Problems/Problem 13 | Next problem]]
 
* [[2003 AIME I Problems/Problem 13 | Next problem]]
 
* [[2003 AIME I Problems]]
 
* [[2003 AIME I Problems]]
 +
 +
[[Category:Intermediate Geometry Problems]]

Revision as of 18:46, 19 January 2007

Problem

In convex quadrilateral $ABCD, \angle A \cong \angle C, AB = CD = 180,$ and $AD \neq BC.$ The perimeter of $ABCD$ is 640. Find $\lfloor 1000 \cos A \rfloor.$ (The notation $\lfloor x \rfloor$ means the greatest integer that is less than or equal to $x.$)

Solution

Let $AD = x$ so $BC = 640 - 360 - x = 280 - x$. Let $BD = d$ so by the Law of Cosines in $\triangle ABD$ at angle $A$ and in $\triangle BCD$ at angle $C$, $180^2 + x^2 - 2\cdot180 \cdot x \cdot \cos A = d^2 = 180^2 + (280 - x)^2 - 2\cdot180\cdot(280 - x) \cdot \cos A$. Then $x^2 - 360x\cos A = (280 -x)^2 -360(280 - x)\cos A$ and grouping the $\cos A$ terms gives 360(280 - 2x)\cos A = 280(280 - 2x)$.

Since $x \neq 280 - x$, $280 - 2x \neq 0$ and thus $360\cos A = 280$ so $\cos A = \frac{7}{9} = 0.7777\ldots$ and so $\lfloor 1000\cos A\rfloor = 777$.

See also