2003 AIME I Problems/Problem 12

Revision as of 16:59, 11 June 2008 by Azjps (talk | contribs) (Solution: construct asy using x = 160)

Problem

In convex quadrilateral $ABCD, \angle A \cong \angle C, AB = CD = 180,$ and $AD \neq BC.$ The perimeter of $ABCD$ is 640. Find $\lfloor 1000 \cos A \rfloor.$ (The notation $\lfloor x \rfloor$ means the greatest integer that is less than or equal to $x.$)

Solution

[asy] real x = 1.60; /* arbitrary */  pointpen = black; pathpen = black+linewidth(0.7); size(180); real BD = x*x + 1.80*1.80 - 2 * 1.80 * x * 7 / 9; pair A=(0,0),B=(1.8,0),D=IP(CR(A,x),CR(B,BD)),C=OP(CR(D,1.8),CR(B,2.80 - x)); D(MP("A",A)--MP("B",B)--MP("C",C)--MP("D",D,N)--B--A--D); MP("180",(A+B)/2); MP("180",(C+D)/2,NE); D(anglemark(B,A,D)); D(anglemark(D,C,B)); [/asy]

Let $AD = x$ so $BC = 640 - 360 - x = 280 - x$. By the Law of Cosines in $\triangle ABD$ at angle $A$ and in $\triangle BCD$ at angle $C$, \[180^2 + x^2 - 2\cdot180 \cdot x \cdot \cos A = BD^2 = 180^2 + (280 - x)^2 - 2\cdot180\cdot(280 - x) \cdot \cos A.\] Then $x^2 - 360x\cos A = (280 -x)^2 -360(280 - x)\cos A$ and grouping the $\cos A$ terms gives $360(280 - 2x)\cos A = 280(280 - 2x)$.

Since $x \neq 280 - x$, $280 - 2x \neq 0$ and thus $360\cos A = 280$ so $\cos A = \frac{7}{9} = 0.7777\ldots$ and so $\lfloor 1000\cos A\rfloor = \boxed{777}$.

See also

2003 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions