Difference between revisions of "2003 AIME I Problems/Problem 7"

m (See also: typo)
m (img)
Line 3: Line 3:
  
 
== Solution ==
 
== Solution ==
{{image}}
+
[[Image:2003_I_AIME-7.png]]
 +
 
 
Denote the height of <math>\triangle ACD</math> as <math>h</math>, <math>x = AD = CD</math>, and <math>y = BD</math>. Using the Pythagorean theorem, we find that <math>h^2 = y^2 - 6^2</math> and <math>h^2 = x^2 - 15^2</math>. Thus, <math>y^2 - 36 = x^2 - 225 \Longrightarrow x^2 - y^2 = 189</math>. The LHS is [[difference of squares]], so <math>(x + y)(x - y) = 189</math>. As both <math>x,\ y</math> are integers, <math>x+y,\ x-y</math> must be integral divisors of 189.  
 
Denote the height of <math>\triangle ACD</math> as <math>h</math>, <math>x = AD = CD</math>, and <math>y = BD</math>. Using the Pythagorean theorem, we find that <math>h^2 = y^2 - 6^2</math> and <math>h^2 = x^2 - 15^2</math>. Thus, <math>y^2 - 36 = x^2 - 225 \Longrightarrow x^2 - y^2 = 189</math>. The LHS is [[difference of squares]], so <math>(x + y)(x - y) = 189</math>. As both <math>x,\ y</math> are integers, <math>x+y,\ x-y</math> must be integral divisors of 189.  
  

Revision as of 14:38, 16 September 2007

Problem

Point $B$ is on $\overline{AC}$ with $AB = 9$ and $BC = 21.$ Point $D$ is not on $\overline{AC}$ so that $AD = CD,$ and $AD$ and $BD$ are integers. Let $s$ be the sum of all possible perimeters of $\triangle ACD$. Find $s.$

Solution

2003 I AIME-7.png

Denote the height of $\triangle ACD$ as $h$, $x = AD = CD$, and $y = BD$. Using the Pythagorean theorem, we find that $h^2 = y^2 - 6^2$ and $h^2 = x^2 - 15^2$. Thus, $y^2 - 36 = x^2 - 225 \Longrightarrow x^2 - y^2 = 189$. The LHS is difference of squares, so $(x + y)(x - y) = 189$. As both $x,\ y$ are integers, $x+y,\ x-y$ must be integral divisors of 189.

The divisors of 189 are $(1,189)\ (3,63)\ (7,27)\ (9,21)$. This yields the four potential sets for $(x,y)$ as $(95,94)\ (33,30)\ (17,10)\ (15,6)$. The last is not a possibility since it simply degenerates into a line. The sum of the three possible perimeters of $\triangle ACD$ is equal to $3(AC) + 2(x_1 + x_2 + x_3) = 90 + 2(95 + 33 + 17) = 380$.

See also

2003 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions