Difference between revisions of "2005 IMO Problems/Problem 3"

(Created page with "Let <math>x, y, z > 0</math> satisfy <math>xyz\ge 1</math>. Prove that <cmath>\frac{x^5-x^2}{x^5+y^2+z^2} + \frac{y^5-y^2}{x^2+y^5+z^2} + \frac{z^5-z^2}{x^2+y^2+z^5} \ge 0.</c...")
 
 
Line 1: Line 1:
 +
==Problem==
 +
 
Let <math>x, y, z > 0</math> satisfy <math>xyz\ge 1</math>. Prove that <cmath>\frac{x^5-x^2}{x^5+y^2+z^2} + \frac{y^5-y^2}{x^2+y^5+z^2} + \frac{z^5-z^2}{x^2+y^2+z^5} \ge 0.</cmath>
 
Let <math>x, y, z > 0</math> satisfy <math>xyz\ge 1</math>. Prove that <cmath>\frac{x^5-x^2}{x^5+y^2+z^2} + \frac{y^5-y^2}{x^2+y^5+z^2} + \frac{z^5-z^2}{x^2+y^2+z^5} \ge 0.</cmath>
 +
 +
==Solution==
 +
{{solution}}
 +
 +
==See Also==
 +
 +
{{IMO box|year=2005|num-b=2|num-a=4}}

Latest revision as of 00:58, 19 November 2023

Problem

Let $x, y, z > 0$ satisfy $xyz\ge 1$. Prove that \[\frac{x^5-x^2}{x^5+y^2+z^2} + \frac{y^5-y^2}{x^2+y^5+z^2} + \frac{z^5-z^2}{x^2+y^2+z^5} \ge 0.\]

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

2005 IMO (Problems) • Resources
Preceded by
Problem 2
1 2 3 4 5 6 Followed by
Problem 4
All IMO Problems and Solutions