2007 AMC 12B Problems/Problem 25

Revision as of 14:33, 1 October 2008 by 1=2 (talk | contribs) (New page: ==Problem== Points <math>A,B,C,D</math> and <math>E</math> are located in 3-dimensional space with <math>AB=BC=CD=DE=EA=2</math> and <math>\angle ABC=\angle CDE=\angle DEA=90^o</math>. The...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Points $A,B,C,D$ and $E$ are located in 3-dimensional space with $AB=BC=CD=DE=EA=2$ and $\angle ABC=\angle CDE=\angle DEA=90^o$. The plane of $\triangle ABC$ is parallel to $\overline{DE}$. What is the area of $\triangle BDE$?

$\mathrm {(A)} \sqrt{2}\qquad \mathrm {(B)} \sqrt{3}\qquad \mathrm {(C)} 2\qquad \mathrm {(D)} \sqrt{5}\qquad \mathrm {(E)} \sqrt{6}$

Solution

Let $A=(0,0,0)$, and $B=(2,0,0)$. Since $EA=2$, we could let $C=(2,0,2)$, $D=(2,2,2)$, and $E=(2,2,0)$. Now to get back to $A$ we need another vertex $F=(0,2,0)$. Now if we look at this configuration as if it was two dimensions, we would see a square missing a side if we don't draw $FA$. Now we can bend these three sides into an equilateral triangle, and the coordinates change: $A=(0,0,0)$, $B=(2,0,0)$, $C=(2,0,2)$, $D=(1,\sqrt{3},2)$, and $E=(1,\sqrt{3},0)$. Checking for all the requirements, they are all satisfied. Now we find the area of triangle $BDE$. It is a $2-2-2\sqrt{2}$ triangle, which is an isosceles right triangle. Thus the area of it is $\frac{2*2}{2}=2\Rightarrow \mathrn{(C)}$ (Error compiling LaTeX. Unknown error_msg).

See also