# Difference between revisions of "2007 AMC 12B Problems/Problem 3"

## Problem

The point $O$ is the center of the circle circumscribed about triangle $ABC$, with $\angle BOC = 120^{\circ}$ and $\angle AOB = 140^{\circ}$, as shown. What is the degree measure of $\angle ABC$? $\mathrm {(A)} 35 \qquad \mathrm {(B)} 40 \qquad \mathrm {(C)} 45 \qquad \mathrm {(D)} 50 \qquad \mathrm {(E)} 60$

## Solution

Since triangles $ABO$ and $BOC$ are isosceles, $\angle ABO=20^o$ and $\angle OBC=30^o$. Therefore, $\angle ABC=50^o$, or $\mathim{(D)}$ (Error compiling LaTeX. ! Undefined control sequence.).

## See Also

 2007 AMC 12B (Problems • Answer Key • Resources) Preceded byProblem 2 Followed byProblem 4 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS