Difference between revisions of "2008 AMC 12A Problems/Problem 2"

m (wikified)
m
 
(3 intermediate revisions by 3 users not shown)
Line 2: Line 2:
 
What is the [[reciprocal]] of <math>\frac{1}{2}+\frac{2}{3}</math>?
 
What is the [[reciprocal]] of <math>\frac{1}{2}+\frac{2}{3}</math>?
  
<math>\textbf{(A)} \frac{6}{7} \qquad \textbf{(B)} \frac{7}{6} \qquad \textbf{(C)} \frac{5}{3} \qquad \textbf{(D)} 3 \qquad \textbf{(E)} \frac{7}{2} </math>
+
<math>\mathrm{(A)}\ \frac{6}{7}\qquad\mathrm{(B)}\ \frac{7}{6}\qquad\mathrm{(C)}\ \frac{5}{3}\qquad\mathrm{(D)}\ 3\qquad\mathrm{(E)}\ \frac{7}{2}</math>
  
==Solution==
+
==Solution 1==
<math>\left(\frac{1}{2}+\frac{2}{3}\right)^{-1}=\left(\frac{3}{6}+\frac{4}{6}\right)^{-1}=\left(\frac{7}{6}\right)^{-1}=\frac{6}{7}\Rightarrow A</math>.
+
 
 +
Here's a cheapshot:
 +
Obviously, <math>\frac{1}{2}+\frac{2}{3}</math> is greater than <math>1</math>. Therefore, its reciprocal is less than <math>1</math>, and the answer must be <math>\boxed{\frac{6}{7}}</math>.
 +
 
 +
==Solution 2==
 +
 
 +
<math>\left(\frac{1}{2}+\frac{2}{3}\right)^{-1}=\left(\frac{3}{6}+\frac{4}{6}\right)^{-1}=\left(\frac{7}{6}\right)^{-1}=\boxed{\mathrm{(A)}\ \frac{6}{7}}</math>.
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2008|ab=A|num-b=1|num-a=3}}
 
{{AMC12 box|year=2008|ab=A|num-b=1|num-a=3}}
 +
{{MAA Notice}}

Latest revision as of 12:22, 7 September 2021

Problem

What is the reciprocal of $\frac{1}{2}+\frac{2}{3}$?

$\mathrm{(A)}\ \frac{6}{7}\qquad\mathrm{(B)}\ \frac{7}{6}\qquad\mathrm{(C)}\ \frac{5}{3}\qquad\mathrm{(D)}\ 3\qquad\mathrm{(E)}\ \frac{7}{2}$

Solution 1

Here's a cheapshot: Obviously, $\frac{1}{2}+\frac{2}{3}$ is greater than $1$. Therefore, its reciprocal is less than $1$, and the answer must be $\boxed{\frac{6}{7}}$.

Solution 2

$\left(\frac{1}{2}+\frac{2}{3}\right)^{-1}=\left(\frac{3}{6}+\frac{4}{6}\right)^{-1}=\left(\frac{7}{6}\right)^{-1}=\boxed{\mathrm{(A)}\ \frac{6}{7}}$.

See Also

2008 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png