Difference between revisions of "2008 AMC 12B Problems/Problem 9"

(New page: ==Problem 9== Points <math>A</math> and <math>B</math> are on a circle of radius <math>5</math> and <math>AB = 6</math>. Point <math>C</math> is the midpoint of the minor arc <math>AB</mat...)
 
Line 7: Line 7:
 
Let <math>\alpha</math> be the angle that subtends the arc AB. By the law of cosines,
 
Let <math>\alpha</math> be the angle that subtends the arc AB. By the law of cosines,
 
<math>6^2=5^2+5^2-2*5*5cos(\alpha)</math>
 
<math>6^2=5^2+5^2-2*5*5cos(\alpha)</math>
 +
 
<math>\alpha = cos^{-1}(7/25)</math>
 
<math>\alpha = cos^{-1}(7/25)</math>
  

Revision as of 04:18, 2 March 2008

Problem 9

Points $A$ and $B$ are on a circle of radius $5$ and $AB = 6$. Point $C$ is the midpoint of the minor arc $AB$. What is the length of the line segment $AC$?

$\textbf{(A)}\ \sqrt {10} \qquad \textbf{(B)}\ \frac {7}{2} \qquad \textbf{(C)}\ \sqrt {14} \qquad \textbf{(D)}\ \sqrt {15} \qquad \textbf{(E)}\ 4$

Solution

Let $\alpha$ be the angle that subtends the arc AB. By the law of cosines, $6^2=5^2+5^2-2*5*5cos(\alpha)$

$\alpha = cos^{-1}(7/25)$

The half-angle formula says that $cos(\alpha/2) = \frac{\sqrt{1+cos(\alpha)}}{2} = \sqrt{\frac{32/25}{2}} = \sqrt{\frac{16}{25}} = \frac{4}{5}$ $AC = \sqrt{5^2+5^2-2*5*5*\frac{4}{5}}$

$AC = \sqrt{50-50\frac{4}{5}}$

$AC = \sqrt{10}$, which is answer choice A.


See Also

2008 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions