2008 USAMO Problems/Problem 2

Revision as of 18:09, 1 May 2008 by Azjps (talk | contribs) (create)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

(Zuming Feng) Let $ABC$ be an acute, scalene triangle, and let $M$, $N$, and $P$ be the midpoints of $\overline{BC}$, $\overline{CA}$, and $\overline{AB}$, respectively. Let the perpendicular bisectors of $\overline{AB}$ and $\overline{AC}$ intersect ray $AM$ in points $D$ and $E$ respectively, and let lines $BD$ and $CE$ intersect in point $F$, inside of triangle $ABC$. Prove that points $A$, $N$, $F$, and $P$ all lie on one circle.

Solution

Solution 1

Solution 2

Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.

Resources

2008 USAMO (ProblemsResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6
All USAMO Problems and Solutions
  • <url>Forum/viewtopic.php?t=202907 Discussion on AoPS/MathLinks</url>
Invalid username
Login to AoPS