Difference between revisions of "2009 AMC 8 Problems/Problem 12"

(Video Solution)
(Video Solution)
Line 35: Line 35:
 
Only <math>9</math> is not prime, so there are <math>7</math> prime numbers and <math>9</math> total numbers for a probability of <math>\boxed{\textbf{(D)}\ \frac79}</math>.
 
Only <math>9</math> is not prime, so there are <math>7</math> prime numbers and <math>9</math> total numbers for a probability of <math>\boxed{\textbf{(D)}\ \frac79}</math>.
  
 
==Video Solution==
 
https://www.youtube.com/watch?v=NPTaWKEkaHs
 
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2009|num-b=11|num-a=13}}
 
{{AMC8 box|year=2009|num-b=11|num-a=13}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 21:15, 17 June 2022

Problem

The two spinners shown are spun once and each lands on one of the numbered sectors. What is the probability that the sum of the numbers in the two sectors is prime?

[asy] unitsize(30);  draw(unitcircle); draw((0,0)--(0,-1)); draw((0,0)--(cos(pi/6),sin(pi/6))); draw((0,0)--(-cos(pi/6),sin(pi/6))); label("$1$",(0,.5)); label("$3$",((cos(pi/6))/2,(-sin(pi/6))/2)); label("$5$",(-(cos(pi/6))/2,(-sin(pi/6))/2));[/asy] [asy] unitsize(30);  draw(unitcircle); draw((0,0)--(0,-1)); draw((0,0)--(cos(pi/6),sin(pi/6))); draw((0,0)--(-cos(pi/6),sin(pi/6))); label("$2$",(0,.5)); label("$4$",((cos(pi/6))/2,(-sin(pi/6))/2)); label("$6$",(-(cos(pi/6))/2,(-sin(pi/6))/2));[/asy]

$\textbf{(A)}\ \frac{1}{2}\qquad\textbf{(B)}\ \frac{2}{3}\qquad\textbf{(C)}\ \frac{3}{4}\qquad\textbf{(D)}\ \frac{7}{9}\qquad\textbf{(E)}\ \frac{5}{6}$


Solution

The possible sums are \[\begin{tabular}{c|ccc} & 1 & 3 & 5 \\ \hline 2 & 3 & 5 & 7 \\ 4 & 5 & 7 & 9 \\ 6 & 7 & 9 & 11 \end{tabular}\]

Only $9$ is not prime, so there are $7$ prime numbers and $9$ total numbers for a probability of $\boxed{\textbf{(D)}\ \frac79}$.


See Also

2009 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png