Difference between revisions of "2009 AMC 8 Problems/Problem 14"
m (→See Also) |
(→Solution) |
||
Line 10: | Line 10: | ||
==Solution== | ==Solution== | ||
− | The way to Temple took | + | The way to Temple took 50/60=5/6 hours, and the way back took 50/40=5/4 for a total of 5/6 + 5/4 = 25/12 hours. The trip is 50*2=100 miles. The average speed is 100 over 25/12 =48 miles per hour. |
==Solution 2== | ==Solution 2== |
Revision as of 14:33, 14 August 2021
Contents
Problem
Austin and Temple are miles apart along Interstate 35. Bonnie drove from Austin to her daughter's house in Temple, averaging miles per hour. Leaving the car with her daughter, Bonnie rode a bus back to Austin along the same route and averaged miles per hour on the return trip. What was the average speed for the round trip, in miles per hour?
Solution
The way to Temple took 50/60=5/6 hours, and the way back took 50/40=5/4 for a total of 5/6 + 5/4 = 25/12 hours. The trip is 50*2=100 miles. The average speed is 100 over 25/12 =48 miles per hour.
Solution 2
This question simply asks for the harmonic mean of and , regardless of how far Austin and Temple are. Plugging in, we have: miles per hour.
See Also
2015 Problem 17
2009 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.