# Difference between revisions of "2010 AMC 10B Problems/Problem 10"

## Problem

Shelby drives her scooter at a speed of $30$ miles per hour if it is not raining, and $20$ miles per hour if it is raining. Today she drove in the sun in the morning and in the rain in the evening, for a total of $16$ miles in $40$ minutes. How many minutes did she drive in the rain? $\textbf{(A)}\ 18 \qquad \textbf{(B)}\ 21 \qquad \textbf{(C)}\ 24 \qquad \textbf{(D)}\ 27 \qquad \textbf{(E)}\ 30$

## Solution 1

We know that $d = vt$

Since we know that she drove both when it was raining and when it was not and that her total distance traveled is $16$ miles.

We also know that she drove a total of $40$ minutes which is $\dfrac{2}{3}$ of an hour.

We get the following system of equations, where $x$ is the time traveled when it was not raining and $y$ is the time traveled when it was raining: $\left\{\begin{array}{ccc} 30x + 20y & = & 16 \\x + y & = & \dfrac{2}{3} \end{array} \right.$

Solving the above equations by multiplying the second equation by 30 and subtracting the second equation from the first we get: $-10y = -4 \Leftrightarrow y = \dfrac{2}{5}$

We know now that the time traveled in rain was $\dfrac{2}{5}$ of an hour, which is $\dfrac{2}{5}*60 = 24$ minutes

So, our answer is $\boxed{\textbf{(C)}\ 24}$

## Solution 2

We let $t$ be the time Shelby drives in the rain. This gives us the equation $20t + 30(\frac{2}{3} - t) = 16$. Expanding and rearranging gives us $10t = 4$, or $t = 0.4$ hours. we multiply $0.4$ by $60$, which gives us $\boxed{\textbf{(C)}\ 24}$.

## See Also

 2010 AMC 10B (Problems • Answer Key • Resources) Preceded byProblem 9 Followed byProblem 11 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS