Difference between revisions of "2010 AMC 10B Problems/Problem 25"

m (Solution)
(Solution)
Line 31: Line 31:
 
<cmath>P(x) = (x-1)(x-3)(x-5)(x-7)((-8x + 60)(x-2)(x-6)+42) + 315</cmath><cmath>
 
<cmath>P(x) = (x-1)(x-3)(x-5)(x-7)((-8x + 60)(x-2)(x-6)+42) + 315</cmath><cmath>
  
</cmath> = -8 x^7+252 x^6-3248 x^5+22050 x^4-84392 x^3+179928 x^2-194592 x+80325 $
+
</cmath> = -8 x^7+252 x^6-3248 x^5+22050 x^4-84392 x^3+179928 x^2-194592 x+80325 <cmath></cmath>
  
 
== See also ==
 
== See also ==

Revision as of 14:13, 12 February 2017

Problem

Let $a > 0$, and let $P(x)$ be a polynomial with integer coefficients such that

$P(1) = P(3) = P(5) = P(7) = a$, and
$P(2) = P(4) = P(6) = P(8) = -a$.

What is the smallest possible value of $a$?

$\textbf{(A)}\ 105 \qquad \textbf{(B)}\ 315 \qquad \textbf{(C)}\ 945 \qquad \textbf{(D)}\ 7! \qquad \textbf{(E)}\ 8!$

Solution

We observe that because $P(1) = P(3) = P(5) = P(7) = a$, if we define a new polynomial $R(x)$ such that $R(x) = P(x) - a$, $R(x)$ has roots when $P(x) = a$; namely, when $x=1,3,5,7$.

Thus since $R(x)$ has roots when $x=1,3,5,7$, we can factor the product $(x-1)(x-3)(x-5)(x-7)$ out of $R(x)$ to obtain a new polynomial $Q(x)$ such that $(x-1)(x-3)(x-5)(x-7)(Q(x)) = R(x) = P(x) - a$.

Then, plugging in values of $2,4,6,8,$ we get

\[P(2)-a=(2-1)(2-3)(2-5)(2-7)Q(2) = -15Q(2) = -2a\] \[P(4)-a=(4-1)(4-3)(4-5)(4-7)Q(4) = 9Q(4) = -2a\] \[P(6)-a=(6-1)(6-3)(6-5)(6-7)Q(6) = -15Q(6) = -2a\] \[P(8)-a=(8-1)(8-3)(8-5)(8-7)Q(8) = 105Q(8) = -2a\]

$-2a=-15Q(2)=9Q(4)=-15Q(6)=105Q(8).$ Thus, the least value of $a$ must be the $lcm(15,9,15,105)$. Solving, we receive $315$, so our answer is $\boxed{\textbf{(B)}\ 315}$.

To complete the solution, we can let $a = 315$, and then try to find $Q(x)$. We know from the above calculation that $Q(2)=42, Q(4)=-70, Q(6)=42$, and $Q(8)=-6$. Then we can let $Q(x) = T(x)(x-2)(x-6)+42$, getting $T(4)=28, T(8)=-4$. Let $T(x)=L(x)(x-8)-4$, then $L(4)=-8$. Therefore, it is possible to choose $T(x) = -8(x-8)-4 = -8x + 60$, so the goal is accomplished. As a reference, the polynomial we get is

\[P(x) = (x-1)(x-3)(x-5)(x-7)((-8x + 60)(x-2)(x-6)+42) + 315\]\[\] = -8 x^7+252 x^6-3248 x^5+22050 x^4-84392 x^3+179928 x^2-194592 x+80325 \[\]

See also

2010 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

See also The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS