# Difference between revisions of "2012 USAJMO Problems/Problem 3"

(Created page with "== Problem == Let <math>a</math>, <math>b</math>, <math>c</math> be positive real numbers. Prove that <cmath>\frac{a^3 + 3b^3}{5a + b} + \frac{b^3 + 3c^3}{5b + c} + \frac{c^3 +...") |
(→Solution) |
||

Line 5: | Line 5: | ||

==Solution== | ==Solution== | ||

+ | |||

+ | By the Cauchy-Schwarz inequality, | ||

+ | <cmath>[a(5a + b) + b(5b + c) + c(5c + a)] \left( \frac{a^3}{5a + b} + \frac{b^3}{5b + c} + \frac{c^3}{5c + a} \right) \ge (a^2 + b^2 + c^2)^2,</cmath> | ||

+ | so | ||

+ | <cmath>\frac{a^3}{5a + b} + \frac{b^3}{5b + c} + \frac{c^3}{5c + a} \ge \frac{(a^2 + b^2 + c^2)^2}{5a^2 + 5b^2 + 5c^2 + ab + ac + bc}.</cmath> | ||

+ | Since <math>a^2 + b^2 + c^2 \ge ab + ac + bc</math>, | ||

+ | <cmath>\frac{(a^2 + b^2 + c^2)^2}{5a^2 + 5b^2 + 5c^2 + ab + ac + bc} \ge \frac{(a^2 + b^2 + c^2)^2}{6a^2 + 6b^2 + 6c^2} = \frac{1}{6} (a^2 + b^2 + c^2).</cmath> | ||

+ | Hence, | ||

+ | <cmath>\frac{a^3}{5a + b} + \frac{b^3}{5b + c} + \frac{c^3}{5c + a} \ge \frac{1}{6} (a^2 + b^2 + c^2).</cmath> | ||

+ | |||

+ | By the same argument, | ||

+ | <cmath>\frac{b^3}{5a + b} + \frac{c^3}{5b + c} + \frac{a^3}{5c + a} \ge \frac{1}{6} (a^2 + b^2 + c^2).</cmath> | ||

+ | Therefore, | ||

+ | <cmath>\frac{a^3 + 3b^3}{5a + b} + \frac{b^3 + 3c^3}{5b + c} + \frac{c^3 + 3a^3}{5c + a} \ge \frac{1 + 3}{6} (a^2 + b^2 + c^2) = \frac{2}{3} (a^2 + b^2 + c^2).</cmath> | ||

==See Also== | ==See Also== |