Difference between revisions of "2012 USAJMO Problems/Problem 6"

m (sine law => law of sines)
(Redirected page to 2012 USAMO Problems/Problem 5)
(Tag: New redirect)
 
Line 1: Line 1:
== Problem ==
+
#redirect [[2012 USAMO Problems/Problem 5]]
 
 
Let <math>P</math> be a point in the plane of triangle <math>ABC</math>, and <math>\gamma</math> a line passing through <math>P</math>.  Let <math>A'</math>, <math>B'</math>, <math>C'</math> be the points where the reflections of lines <math>PA</math>, <math>PB</math>, <math>PC</math> with respect to <math>\gamma</math> intersect lines <math>BC</math>, <math>AC</math>, <math>AB</math>, respectively.  Prove that <math>A'</math>, <math>B'</math>, <math>C'</math> are collinear.
 
 
 
==Solution==
 
 
 
By the [[Law_of_Sines|law of sines]] on triangle <math>AB'P</math>,
 
<cmath>\frac{AB'}{\sin \angle APB'} = \frac{AP}{\sin \angle AB'P},</cmath>
 
so
 
<cmath>AB' = AP \cdot \frac{\sin \angle APB'}{\sin \angle AB'P}.</cmath>
 
 
 
<asy>
 
import graph;
 
import geometry;
 
 
 
unitsize(0.5 cm);
 
 
 
pair[] A, B, C;
 
pair P, R;
 
 
 
A[0] = (2,12);
 
B[0] = (0,0);
 
C[0] = (14,0);
 
P = (4,5);
 
R = 5*dir(70);
 
A[1] = extension(B[0],C[0],P,reflect(P + R,P - R)*(A[0]));
 
B[1] = extension(C[0],A[0],P,reflect(P + R,P - R)*(B[0]));
 
C[1] = extension(A[0],B[0],P,reflect(P + R,P - R)*(C[0]));
 
 
 
draw((P - R)--(P + R),red);
 
draw(A[1]--B[1]--C[1]--cycle,blue);
 
draw(A[0]--B[0]--C[0]--cycle);
 
draw(A[0]--P);
 
draw(B[0]--P);
 
draw(C[0]--P);
 
draw(P--A[1]);
 
draw(P--B[1]);
 
draw(P--C[1]);
 
draw(A[1]--B[0]);
 
draw(A[1]--B[0]);
 
 
 
label("$A$", A[0], N);
 
label("$B$", B[0], S);
 
label("$C$", C[0], SE);
 
dot("$A'$", A[1], SW);
 
dot("$B'$", B[1], NE);
 
dot("$C'$", C[1], W);
 
dot("$P$", P, SE);
 
label("$\gamma$", P + R, N);
 
</asy>
 
 
 
Similarly,
 
<cmath>
 
\begin{align*}
 
B'C &= CP \cdot \frac{\sin \angle CPB'}{\sin \angle CB'P}, \\
 
CA' &= CP \cdot \frac{\sin \angle CPA'}{\sin \angle CA'P}, \\
 
A'B &= BP \cdot \frac{\sin \angle BPA'}{\sin \angle BA'P}, \\
 
BC' &= BP \cdot \frac{\sin \angle BPC'}{\sin \angle BC'P}, \\
 
C'A &= AP \cdot \frac{\sin \angle APC'}{\sin \angle AC'P}.
 
\end{align*}
 
</cmath>
 
Hence,
 
<cmath>
 
\begin{align*}
 
&\frac{AB'}{B'C} \cdot \frac{CA'}{A'B} \cdot \frac{BC'}{C'A} \\
 
&= \frac{\sin \angle APB'}{\sin \angle AB'P} \cdot \frac{\sin \angle CB'P}{\sin \angle CPB'} \cdot \frac{\sin \angle CPA'}{\sin \angle CA'P} \cdot \frac{\sin \angle BA'P}{\sin \angle BPA'} \cdot \frac{\sin \angle BPC'}{\sin \angle BC'P} \cdot \frac{\sin \angle AC'P}{\sin \angle APC'}.
 
\end{align*}
 
</cmath>
 
 
 
Since angles <math>\angle AB'P</math> and <math>\angle CB'P</math> are supplementary or equal, depending on the position of <math>B'</math> on <math>AC</math>,
 
<cmath>\sin \angle AB'P = \sin \angle CB'P.</cmath>
 
Similarly,
 
<cmath>
 
\begin{align*}
 
\sin \angle CA'P &= \sin \angle BA'P, \\
 
\sin \angle BC'P &= \sin \angle AC'P.
 
\end{align*}
 
</cmath>
 
 
 
By the reflective property, <math>\angle APB'</math> and <math>\angle BPA'</math> are supplementary or equal, so
 
<cmath>\sin \angle APB' = \sin \angle BPA'.</cmath>
 
Similarly,
 
<cmath>
 
\begin{align*}
 
\sin \angle CPA' &= \sin \angle APC', \\
 
\sin \angle BPC' &= \sin \angle CPB'.
 
\end{align*}
 
</cmath>
 
Therefore,
 
<cmath>\frac{AB'}{B'C} \cdot \frac{CA'}{A'B} \cdot \frac{BC'}{C'A} = 1,</cmath>
 
so by [[Menelaus'_Theorem|Menelaus's theorem]], <math>A'</math>, <math>B'</math>, and <math>C'</math> are collinear.
 
 
 
{{alternate solutions}}
 
 
 
==See also==
 
*[[USAJMO Problems and Solutions]]
 
 
 
{{USAJMO newbox|year=2012|num-b=5|aftertext=|after=Last Problem}}
 
{{MAA Notice}}
 

Latest revision as of 15:15, 25 August 2020