# Difference between revisions of "2013 AIME II Problems/Problem 10"

Given a circle of radius $\sqrt{13}$, let $A$ be a point at a distance $4 + \sqrt{13}$ from the center $O$ of the circle. Let $B$ be the point on the circle nearest to point $A$. A line passing through the point $A$ intersects the circle at points $K$ and $L$. The maximum possible area for $\triangle BKL$ can be written in the form $\frac{a - b\sqrt{c}}{d}$, where $a$, $b$, $c$, and $d$ are positive integers, $a$ and $d$ are relatively prime, and $c$ is not divisible by the square of any prime. Find $a+b+c+d$.

## Solution

Now we put the figure in the Cartesian plane, let the center of the circle $O (0,0)$, then $B (\sqrt{13},0)$, and $A(4+\sqrt{13},0)$

The equation for Circle O is $x^2+y^2=13$, and let the slope of the line $AKL$ be $k$, then the equation for line $AKL$ is $y=k(x-4-\sqrt{13})$

Then we get $(k^2+1)x^2-2k^2(4+\sqrt{13})x+k^2\cdot (4+\sqrt{13})^2-13=0$, according to Vieta's formulas, we get $x1+x2=\frac{2k^2(4+\sqrt{13})}{k^2+1}$, and $x1x2=\frac{(4+\sqrt{13})^2\cdot k^2-13}{k^2+1}$

So, $LK=\sqrt{1+k^2}\cdot \sqrt{(x1+x2)^2-4x1x2}$

Also, the distance between $O$ and $LK$ is $\frac{k\times \sqrt{13}-(4+\sqrt{13})\cdot k}{\sqrt{1+k^2}}=\frac{-4k}{\sqrt{1+k^2}}$

So the ares $S=0.5ah=\frac{-4k\sqrt{(16-8\sqrt{13})k^2-13}}{k^2+1} Then the maximum value of$ (Error compiling LaTeX. ! Missing $inserted.)S $is$\frac{104-26\sqrt{13}}{3} $So the answer is$104+26+13+3=\boxed{146}$

Invalid username
Login to AoPS