# 2013 AIME II Problems/Problem 10

## Problem

Given a circle of radius $\sqrt{13}$, let $A$ be a point at a distance $4 + \sqrt{13}$ from the center $O$ of the circle. Let $B$ be the point on the circle nearest to point $A$. A line passing through the point $A$ intersects the circle at points $K$ and $L$. The maximum possible area for $\triangle BKL$ can be written in the form $\frac{a - b\sqrt{c}}{d}$, where $a$, $b$, $c$, and $d$ are positive integers, $a$ and $d$ are relatively prime, and $c$ is not divisible by the square of any prime. Find $a+b+c+d$.

## Solution 1 (Coordbash)

$[asy] import math; import olympiad; import graph; pair A, B, K, L; B = (sqrt(13), 0); A=(4+sqrt(13), 0); dot(B); dot(A); draw(Circle((0,0), sqrt(13))); label("O", (0,0), S);label("B", B, SW);label("A", A, S); dot((0,0)); [/asy]$

Now we put the figure in the Cartesian plane, let the center of the circle $O (0,0)$, then $B (\sqrt{13},0)$, and $A(4+\sqrt{13},0)$

The equation for Circle O is $x^2+y^2=13$, and let the slope of the line$AKL$ be $k$, then the equation for line$AKL$ is $y=k(x-4-\sqrt{13})$.

Then we get $(k^2+1)x^2-2k^2(4+\sqrt{13})x+k^2\cdot (4+\sqrt{13})^2-13=0$. According to Vieta's Formulas, we get

$x_1+x_2=\frac{2k^2(4+\sqrt{13})}{k^2+1}$, and $x_1x_2=\frac{(4+\sqrt{13})^2\cdot k^2-13}{k^2+1}$

So, $LK=\sqrt{1+k^2}\cdot \sqrt{(x_1+x_2)^2-4x_1x_2}$

Also, the distance between $B$ and $LK$ is $\frac{k\times \sqrt{13}-(4+\sqrt{13})\cdot k}{\sqrt{1+k^2}}=\frac{-4k}{\sqrt{1+k^2}}$

So the area $S=0.5ah=\frac{-4k\sqrt{(16+8\sqrt{13})k^2-13}}{k^2+1}$

Then the maximum value of $S$ is $\frac{104-26\sqrt{13}}{3}$

So the answer is $104+26+13+3=\boxed{146}$.

## Solution 2

$[asy] import math; import olympiad; import graph; pair A, B, K, L; B = (sqrt(13), 0); A=(4+sqrt(13), 0); dot(B); dot(A); draw(Circle((0,0), sqrt(13))); label("O", (0,0), S);label("B", B, SW);label("A", A, S); dot((0,0)); [/asy]$

Draw $OC$ perpendicular to $KL$ at $C$. Draw $BD$ perpendicular to $KL$ at $D$.

$$\frac{\triangle OKL}{\triangle BKL} = \frac{OC}{BD} = \frac{AO}{AB} = \frac{4+\sqrt{13}}{4}$$

Therefore, to maximize area of $\triangle BKL$, we need to maximize area of $\triangle OKL$.

$$\triangle OKL = \frac12 r^2 \sin{\angle KOL}$$

So when area of $\triangle OKL$ is maximized, $\angle KOL = \frac{\pi}{2}$.

Eventually, we get $$\triangle BKL= \frac12 \cdot (\sqrt{13})^2\cdot(\frac{4}{4+\sqrt{13}})=\frac{104-26\sqrt{13}}{3}$$

So the answer is $104+26+13+3=\boxed{146}$.

## Solution 3 (simpler solution)

A rather easier solution is presented in the Girls' Angle WordPress:

## Solution 4

Let $N,M$ les on $AL$ such that $BM\bot AL, ON\bot AL$, call $BM=h, ON=k,LN=KN=d$ We call $\angle{LON}=\alpha$ By similar triangle, we have $\frac{h}{k}=\frac{4}{4+\sqrt{13}}, h=\frac{4k}{4+\sqrt{13}}$. Then, we realize the area is just $dh=d\cdot \frac{4K}{4+\sqrt{13}}$ As $\sin \alpha=\frac{d}{\sqrt{13}}, \cos \alpha=\frac{k}{\sqrt{13}}$. Now, we have to maximize $\frac{52\sin \alpha \cos \alpha}{4+\sqrt{13}}=\frac{26\sin 2\alpha}{4+\sqrt{13}}$, which is obviously reached when $\alpha=45^{\circ}$, the answer is $\frac{104-26\sqrt{13}}{3}$ leads to $\boxed{146}$

~bluesoul

## Solution 5

Let C and D be the base of perpendiculars dropped from points O and B to AK. Denote BD = h, OC = H. $$\triangle ABD \sim \triangle AOC \implies \frac {h}{H} = \frac {4}{4 + \sqrt{13}}.$$ $KL$ is the base of triangles $\triangle OKL$ and $\triangle BKL \implies \frac {[BKL]}{[OKL]} = \frac{h}{H} =$ const $\implies$ The maximum possible area for $\triangle BKL$ and $\triangle OKL$ are at the same position of point $K$.

$\triangle OKL$ has sides $OK = OL = \sqrt{13}\implies \max[\triangle OKL] = \frac {OK^2}{2} = \frac {13}{2}$

in the case $\angle KOL = 90^\circ.$ It is possible – if we rotate such triangle, we can find position when $A$ lies on $KL.$ $$\max[\triangle BKL] = \max[\triangle OKL] \cdot \frac {4}{4+\sqrt{13}} = \frac {26}{4+\sqrt{13}} \implies \boxed{\textbf{146}}$$ vladimir.shelomovskii@gmail.com, vvsss