# Difference between revisions of "2013 AMC 8 Problems/Problem 25"

## Problem

A ball with diameter 4 inches starts at point A to roll along the track shown. The track is comprised of 3 semicircular arcs whose radii are $R_1 = 100$ inches, $R_2 = 60$ inches, and $R_3 = 80$ inches, respectively. The ball always remains in contact with the track and does not slip. What is the distance the center of the ball travels over the course from A to B? $[asy] pair A,B; size(8cm); A=(0,0); B=(480,0); draw((0,0)--(480,0),linetype("3 4")); filldraw(circle((8,0),8),black); draw((0,0)..(100,-100)..(200,0)); draw((200,0)..(260,60)..(320,0)); draw((320,0)..(400,-80)..(480,0)); draw((100,0)--(150,-50sqrt(3)),Arrow(size=4)); draw((260,0)--(290,30sqrt(3)),Arrow(size=4)); draw((400,0)--(440,-40sqrt(3)),Arrow(size=4)); label("A", A, SW); label("B", B, SE); label("R_1", (100,-40), W); label("R_2", (260,40), SW); label("R_3", (400,-40), W);[/asy]$

$\textbf{(A)}\ 238\pi \qquad \textbf{(B)}\ 240\pi \qquad \textbf{(C)}\ 260\pi \qquad \textbf{(D)}\ 280\pi \qquad \textbf{(E)}\ 500\pi$

## Solution 1

The radius of the ball is 2 inches. If you think about the ball rolling or draw a path for the ball (see figure below), you see that in A and C it loses $2\pi*2/2=2\pi$ inches, and it gains $2\pi$ inches on B. $[asy] unitsize(0.04cm); import graph; draw(circle(96*dir(0),4),linewidth(1.3)); draw(circle(96*dir(-45),4),linetype("4 4")); draw(circle(96*dir(-90),4),linetype("4 4")); draw(circle(96*dir(-135),4),linetype("4 4")); draw(circle(96*dir(180),4),linetype("4 4")); draw((-100,0)..(0,-100)..(100,0)); draw((-96,0)..(0,-96)..(96,0),dotted); label("1",(-87,0)); label("2",(-60,-60)); label("3",(0,-87)); label("4",(60,-60)); label("5",(87,0)); [/asy]$ So, the departure from the length of the track means that the answer is $\frac{200+120+160}{2}*\pi+(-2-2+2)*\pi=240\pi-2\pi=\boxed{\textbf{(A)}\ 238\pi}$.

## Solution 2

The total length of all of the arcs is $100\pi +80\pi +60\pi=240\pi$. Since we want the path from the center, the actual distance will be shorter. Therefore, the only answer choice less than $240\pi$ is $\boxed{\textbf{(A)}\ 238\pi}$. This solution may be invalid because the actual distance can be longer if the path the center travels is on the outside of the curve, as it is in the middle bump.