Difference between revisions of "2015 AIME I Problems/Problem 7"
m (→Solution) |
m (→Solution) |
||
Line 45: | Line 45: | ||
<math>JC = \sqrt5 \cdot FC = \sqrt5 \cdot FJ/2 = \frac{b\sqrt 5}{2}</math> and <math>BJ = \frac{1}{\sqrt5} \cdot HJ = \frac{b}{\sqrt5}</math>. | <math>JC = \sqrt5 \cdot FC = \sqrt5 \cdot FJ/2 = \frac{b\sqrt 5}{2}</math> and <math>BJ = \frac{1}{\sqrt5} \cdot HJ = \frac{b}{\sqrt5}</math>. | ||
− | Since <math>BC = CJ + | + | Since <math>BC = CJ + BJ</math>, |
<math>2a = \frac{b\sqrt 5}{2} + \frac{b}{\sqrt5}</math>, | <math>2a = \frac{b\sqrt 5}{2} + \frac{b}{\sqrt5}</math>, |
Revision as of 16:25, 22 July 2015
Problem
7. In the diagram below, is a square. Point is the midpoint of . Points and lie on , and and lie on and , respectively, so that is a square. Points and lie on , and and lie on and , respectively, so that is a square. The area of is 99. Find the area of .
Solution
We begin by denoting the length , giving us and . Since angles and are complementary, we have that (and similarly the rest of the triangles are triangles). We let the sidelength of be , giving us:
and .
Since ,
,
Solving for in terms of yields .
We now use the given that , implying that . We also draw the perpendicular from to and label the point of intersection :
This gives that and
Since = , we get
So our final answer is
See also
2015 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.