# Difference between revisions of "2015 AMC 10B Problems/Problem 22"

## Problem

In the figure shown below, $ABCDE$ is a regular pentagon and $AG=1$. What is $FG + JH + CD$? $[asy] pair A=(cos(pi/5)-sin(pi/10),cos(pi/10)+sin(pi/5)), B=(2*cos(pi/5)-sin(pi/10),cos(pi/10)), C=(1,0), D=(0,0), E1=(-sin(pi/10),cos(pi/10)); //(0,0) is a convenient point //E1 to prevent conflict with direction E(ast) pair F=intersectionpoints(D--A,E1--B)[0], G=intersectionpoints(A--C,E1--B)[0], H=intersectionpoints(B--D,A--C)[0], I=intersectionpoints(C--E1,D--B)[0], J=intersectionpoints(E1--C,D--A)[0]; draw(A--B--C--D--E1--A); draw(A--D--B--E1--C--A); draw(F--I--G--J--H--F); label("A",A,N); label("B",B,E); label("C",C,SE); label("D",D,SW); label("E",E1,W); label("F",F,NW); label("G",G,NE); label("H",H,E); label("I",I,S); label("J",J,W); [/asy]$ $\textbf{(A) } 3 \qquad\textbf{(B) } 12-4\sqrt5 \qquad\textbf{(C) } \dfrac{5+2\sqrt5}{3} \qquad\textbf{(D) } 1+\sqrt5 \qquad\textbf{(E) } \dfrac{11+11\sqrt5}{10}$

## Solution

Triangle $AFG$ is isosceles, so $AG=AF=1$. $FJ = FG$ since $\triangle FGJ$ is also isosceles. Using the symmetry of pentagon $FGHIJ$, notice that $\triangle JHG \cong \triangle AFG$. Therefore, $JH=AF=1$.

Since $\triangle AJH \sim \triangle AFG$, $$\frac{JH}{AF+FJ}=\frac{FG}{FA}$$. $$\frac{1}{1+FG} = \frac{FG}1$$ $$1 = FG^2 + FG$$ $$FG^2+FG-1 = 0$$ $$FG = \frac{-1 \pm \sqrt{5} }{2}$$

However, $FG=\frac{-1 + \sqrt{5}}{2}$ since $FG$ must be greater than 0.

Notice that $CD = AE = AJ = AF + FJ = 1 + \frac{-1 + \sqrt{5}}{2} = \frac{1 + \sqrt{5}}{2}$.

Therefore, $FG+JH+CD=\frac{-1+\sqrt5}2+1+\frac{1+\sqrt5}2=\boxed{\mathbf{(D)}\ 1+\sqrt{5}\ }$