Difference between revisions of "2015 AMC 10B Problems/Problem 4"

(Created page with "==Problem 4== Four siblings ordered an extra large pizza. Alex ate <math>\frac15</math>, Beth <math>\frac13</math>, and Cyril <math>\frac14</math> of the pizza. Dan got the l...")
 
 
(7 intermediate revisions by 5 users not shown)
Line 3: Line 3:
 
Four siblings ordered an extra large pizza. Alex ate <math>\frac15</math>, Beth <math>\frac13</math>, and Cyril <math>\frac14</math> of the pizza. Dan got the leftovers. What is the sequence of the siblings in decreasing order of the part of pizza they consumed?
 
Four siblings ordered an extra large pizza. Alex ate <math>\frac15</math>, Beth <math>\frac13</math>, and Cyril <math>\frac14</math> of the pizza. Dan got the leftovers. What is the sequence of the siblings in decreasing order of the part of pizza they consumed?
  
<math>\textbf{(A) } \text{Alex, Beth, Cyril, Dan}</math>
+
<math>\textbf{(A) } \text{Alex, Beth, Cyril, Dan}</math> <br>
<math>\textbf{(B) } \text{Beth, Cyril, Alex, Dan}</math>
+
<math>\textbf{(B) } \text{Beth, Cyril, Alex, Dan}</math> <br>
<math>\textbf{(C) } \text{Beth, Cyril, Dan, Alex}</math>
+
<math>\textbf{(C) } \text{Beth, Cyril, Dan, Alex}</math> <br>
<math>\textbf{(D) } \text{Beth, Dan, Cyril, Alex}</math>
+
<math>\textbf{(D) } \text{Beth, Dan, Cyril, Alex}</math> <br>
<math>\textbf{(E) } \text{Dan, Beth, Cyril, Alex}</math>
+
<math>\textbf{(E) } \text{Dan, Beth, Cyril, Alex}</math> <br>
  
 
==Solution==
 
==Solution==
Let the total amount of slices be <math>60</math>. Then we know Alex ate <math>12</math>, Beth ate <math>20</math>, Cyril ate <math>15</math>, and Dan ate the remaining, or <math>13</math>. Then the sequence in decreasing order is <math>\boxed{\textbf{(C)} \text{Beth, Cyril, Dan, Alex}}</math>.
+
 
 +
Let the pizza have <math>60</math> slices, since the least common multiple of <math>(5,3,4)=60</math>. Therefore, Alex ate <math>\frac{1}{5}\times60=12</math> slices, Beth ate <math>\frac{1}{3}\times60=20</math> slices, and Cyril ate <math>\frac{1}{4}\times60=15</math> slices.  Dan must have eaten <math>60-(12+20+15)=13</math> slices. In decreasing order, we see the answer is <math>\boxed{\textbf{(C) }\text{Beth, Cyril, Dan, Alex}}</math>.
 +
 
 +
==Video Solution==
 +
https://youtu.be/PW6_dcQbhyE
 +
 
 +
~savannahsolver
  
 
==See Also==
 
==See Also==
{{AMC10 box|year=2015|ab=B|before=Problem 3|num-a=5}}
+
{{AMC10 box|year=2015|ab=B|num-b=3|num-a=5}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 13:09, 18 June 2020

Problem 4

Four siblings ordered an extra large pizza. Alex ate $\frac15$, Beth $\frac13$, and Cyril $\frac14$ of the pizza. Dan got the leftovers. What is the sequence of the siblings in decreasing order of the part of pizza they consumed?

$\textbf{(A) } \text{Alex, Beth, Cyril, Dan}$
$\textbf{(B) } \text{Beth, Cyril, Alex, Dan}$
$\textbf{(C) } \text{Beth, Cyril, Dan, Alex}$
$\textbf{(D) } \text{Beth, Dan, Cyril, Alex}$
$\textbf{(E) } \text{Dan, Beth, Cyril, Alex}$

Solution

Let the pizza have $60$ slices, since the least common multiple of $(5,3,4)=60$. Therefore, Alex ate $\frac{1}{5}\times60=12$ slices, Beth ate $\frac{1}{3}\times60=20$ slices, and Cyril ate $\frac{1}{4}\times60=15$ slices. Dan must have eaten $60-(12+20+15)=13$ slices. In decreasing order, we see the answer is $\boxed{\textbf{(C) }\text{Beth, Cyril, Dan, Alex}}$.

Video Solution

https://youtu.be/PW6_dcQbhyE

~savannahsolver

See Also

2015 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS