# 2015 AMC 10B Problems/Problem 7

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

## Problem

Consider the operation "minus the reciprocal of," defined by $a\diamond b=a-\frac{1}{b}$. What is $((1\diamond2)\diamond3)-(1\diamond(2\diamond3))$? $\textbf{(A) } -\dfrac{7}{30} \qquad\textbf{(B) } -\dfrac{1}{6} \qquad\textbf{(C) } 0 \qquad\textbf{(D) } \dfrac{1}{6} \qquad\textbf{(E) } \dfrac{7}{30}$

## Solution $1\diamond2=1-\dfrac{1}{2}=\dfrac{1}{2}$, so $(1\diamond2)\diamond3=\dfrac{1}{2}\diamond3=\dfrac{1}{2}-\dfrac{1}{3}=\dfrac{1}{6}$. Also, $2\diamond3=2-\dfrac{1}{3}=\dfrac{5}{3}$, so $1\diamond(2\diamond3)=1-\dfrac{1}{5/3}=1-\dfrac{3}{5}=\dfrac{2}{5}$. Thus, $((1\diamond2)\diamond3)-(1\diamond(2\diamond3))=\dfrac{1}{6}-\dfrac{2}{5}=\boxed{\mathbf{(A)}\ -\dfrac{7}{30}}$

## Video Solution 1

~Education, the Study of Everything

## Video Solution

~savannahsolver

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 