Difference between revisions of "2015 AMC 8 Problems/Problem 17"

Line 13: Line 13:
  
 
This gives <math>d=\frac{1}{5}v+3.6=\frac{1}{3}v</math>, which gives <math>v=27</math>, which then gives <math>d=\boxed{\textbf{(D)}~9}</math>
 
This gives <math>d=\frac{1}{5}v+3.6=\frac{1}{3}v</math>, which gives <math>v=27</math>, which then gives <math>d=\boxed{\textbf{(D)}~9}</math>
 +
 +
===Solution 2===
 +
<math>d = rt</math>, <math>d</math> is obviously constant
 +
 +
<math>\frac{1}{3} \times r = \frac{1}{5} \times (r + 18)</math>
 +
 +
<math>\frac{r}{3} = \frac{r}{5} + \frac{18}{5}</math>
 +
 +
<math>\frac{2r}{15} = \frac{18}{5}</math>
 +
 +
<math>10r = 270</math> so <math>r = 27</math>, plug into the first one and it's <math>\boxed{\textbf{B}~9}</math> miles to school
 +
 
==See Also==
 
==See Also==
  
 
{{AMC8 box|year=2015|num-b=16|num-a=18}}
 
{{AMC8 box|year=2015|num-b=16|num-a=18}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 18:05, 25 November 2015

Jeremy's father drives him to school in rush hour traffic in 20 minutes. One day there is no traffic, so his father can drive him 18 miles per hour faster and gets him to school in 12 minutes. How far in miles is it to school?

$\textbf{(A) } 4 \qquad \textbf{(B) } 6 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 9 \qquad \textbf{(E) } 12$

Solution 1

So $\frac{d}{v}=\frac{1}{3}$ and $\frac{d}{v+18}=\frac{1}{5}$.

This gives $d=\frac{1}{5}v+3.6=\frac{1}{3}v$, which gives $v=27$, which then gives $d=\boxed{\textbf{(D)}~9}$

Solution 2

$d = rt$, $d$ is obviously constant

$\frac{1}{3} \times r = \frac{1}{5} \times (r + 18)$

$\frac{r}{3} = \frac{r}{5} + \frac{18}{5}$

$\frac{2r}{15} = \frac{18}{5}$

$10r = 270$ so $r = 27$, plug into the first one and it's $\boxed{\textbf{B}~9}$ miles to school

See Also

2015 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS