# 2015 AMC 8 Problems/Problem 19

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

## Problem

A triangle with vertices as $A=(1,3)$, $B=(5,1)$, and $C=(4,4)$ is plotted on a $6\times5$ grid. What fraction of the grid is covered by the triangle?

$\textbf{(A) }\frac{1}{6} \qquad \textbf{(B) }\frac{1}{5} \qquad \textbf{(C) }\frac{1}{4} \qquad \textbf{(D) }\frac{1}{3} \qquad \textbf{(E) }\frac{1}{2}$

$[asy] draw((1,0)--(1,5),linewidth(.5)); draw((2,0)--(2,5),linewidth(.5)); draw((3,0)--(3,5),linewidth(.5)); draw((4,0)--(4,5),linewidth(.5)); draw((5,0)--(5,5),linewidth(.5)); draw((6,0)--(6,5),linewidth(.5)); draw((0,1)--(6,1),linewidth(.5)); draw((0,2)--(6,2),linewidth(.5)); draw((0,3)--(6,3),linewidth(.5)); draw((0,4)--(6,4),linewidth(.5)); draw((0,5)--(6,5),linewidth(.5)); draw((0,0)--(0,6),EndArrow); draw((0,0)--(7,0),EndArrow); draw((1,3)--(4,4)--(5,1)--cycle); label("y",(0,6),W); label("x",(7,0),S); label("A",(1,3),dir(210)); label("B",(5,1),SE); label("C",(4,4),dir(100)); [/asy]$

## Solutions

### Solution 1

The area of $\triangle ABC$ is equal to half the product of its base and height. By the Pythagorean Theorem, we find its height is $\sqrt{1^2+2^2}=\sqrt{5}$, and its base is $\sqrt{2^2+4^2}=\sqrt{20}$. We multiply these and divide by $2$ to find the of the triangle is $\frac{\sqrt{5 \cdot 20}}2=\frac{\sqrt{100}}2=\frac{10}2=5$. Since the grid has an area of $30$, the fraction of the grid covered by the triangle is $\frac 5{30}=\boxed{\textbf{(A) }\frac{1}{6}}$.

### Solution 2

Note angle $\angle ACB$ is right, thus the area is $\sqrt{1^2+3^2} \times \sqrt{1^2+3^2}\times \dfrac{1}{2}=10 \times \dfrac{1}{2}=5$ thus the fraction of the total is $\dfrac{5}{30}=\boxed{\textbf{(A)}~\dfrac{1}{6}}$

### Solution 3

By the Shoelace Theorem, the area of $\triangle ABC=|\dfrac{1}{2}(15+4+4-1-20-12)|=|\dfrac{1}{2}(-10)|=5$.

This means the fraction of the total area is $\dfrac{5}{30}=\boxed{\textbf{(A)}~\dfrac{1}{6}}$

### Solution 4

The smallest rectangle that follows the grid lines and completely encloses $\triangle ABC$ has an area of $12$, where $\triangle ABC$ splits the rectangle into four triangles. The area of $\triangle ABC$ is therefore $12 - (\frac{4 \cdot 2}{2}+\frac{3 \cdot 1}{2}+\frac{3 \cdot 1}{2}) = 12 - (4 + \frac{3}{2} + \frac{3}{2}) = 12 - 7 = 5$. That means that $\triangle ABC$ takes up $\frac{5}{30} = \boxed{\textbf{(A)}~\frac{1}{6}}$ of the grid.

### Solution 5

Using Pick's Theorem, the area of the triangle is $4 + \dfrac{4}{2} - 1=5$. Therefore, the triangle takes up $\dfrac{5}{30}=\boxed{\textbf{(A)}~\frac{1}{6}}$ of the grid.

### Solution 6 (Heron's Formula, Not Recommended)

We can find the lengths of the sides by using the Pythagorean Theorem. Then, we apply Heron's Formula to find the area. $$\sqrt{\left(\frac{\sqrt{10}+\sqrt{10}+2\sqrt{5}}{2}\right)\left(\frac{\sqrt{10}+\sqrt{10}+2\sqrt{5}}{2}-\sqrt{10}\right)\left(\frac{\sqrt{10}+\sqrt{10}+2\sqrt{5}}{2}-\sqrt{10}\right)\left(\frac{\sqrt{10}+\sqrt{10}+2\sqrt{5}}{2}-2\sqrt{5}\right)}.$$ This simplifies to $$\sqrt{\left(\sqrt{10}+\sqrt{5}\right)\left(\sqrt{10}+\sqrt{5}-\sqrt{10}\right)\left(\sqrt{10}+\sqrt{5}-\sqrt{10}\right)\left(\sqrt{10}+\sqrt{5}-2\sqrt{5}\right)}.$$ Again, we simplify to get $$\sqrt{\left(\sqrt{10}+\sqrt{5}\right)\left(\sqrt{5}\right)\left(\sqrt{5}\right)\left(\sqrt{10}-\sqrt{5}\right)}.$$ The middle two terms inside the square root multiply to $5$, and the first and last terms inside the square root multiply to $\sqrt{10}^2-\sqrt{5}^2=10-5=5.$ This means that the area of the triangle is $$\sqrt{5\cdot 5}=5.$$ The area of the grid is $6\cdot 5=30.$ Thus, the answer is $\frac{5}{30}=\boxed{\textbf{(A) }\frac{1}{6}}$. -BorealBear

~savannahsolver