2016 AIME I Problems/Problem 15

Revision as of 19:41, 4 March 2016 by Dli00105 (talk | contribs) (Created page with "==Problem == Circles <math>\omega_1</math> and <math>\omega_2</math> intersect at points <math>X</math> and <math>Y</math>. Line <math>\ell</math> is tangent to <math>\omega_...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Circles $\omega_1$ and $\omega_2$ intersect at points $X$ and $Y$. Line $\ell$ is tangent to $\omega_1$ and $\omega_2$ at $A$ and $B$, respectively, with line $AB$ closer to point $X$ than to $Y$. Circle $\omega$ passes through $A$ and $B$ intersecting $\omega_1$ again at $D \neq A$ and intersecting $\omega_2$ again at $C \neq B$. The three points $C$, $Y$, $D$ are collinear, $XC = 67$, $XY = 47$, and $XD = 37$. Find $AB^2$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

2016 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Last Question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS