2016 USAJMO Problems/Problem 5

Revision as of 15:21, 21 April 2016 by Benq (talk | contribs) (Created page with "== Problem == Let <math>\triangle ABC</math> be an acute triangle, with <math>O</math> as its circumcenter. Point <math>H</math> is the foot of the perpendicular from <math>A...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Let $\triangle ABC$ be an acute triangle, with $O$ as its circumcenter. Point $H$ is the foot of the perpendicular from $A$ to line $\overleftrightarrow{BC}$, and points $P$ and $Q$ are the feet of the perpendiculars from $H$ to the lines $\overleftrightarrow{AB}$ and $\overleftrightarrow{AC}$, respectively.

Given that \[AH^2=2\cdot AO^2,\]prove that the points $O,P,$ and $Q$ are collinear.

Solution

We will use barycentric coordinates with respect to $\triangle ABC.$ The given condition is equivalent to $(\sin B\sin C)^2=\frac{1}{2}.$ Note that \[O=(\sin(2A):\sin(2B):\sin(2C)), P=(\cos^2B,\sin^2B,0), Q=(\cos^2C,0,\sin^2C).\] Therefore, we must show that \[\begin{vmatrix} \sin(2A) & \sin(2B) & \sin(2C) \\  \cos^2B & \sin^2B & 0 \\  \cos^2C & 0 & \sin^2C \\  \end{vmatrix}=0.\] Expanding, we must prove \[\sin(2A)\sin^2B\sin^2C=\cos^2C\sin^2B\sin(2C)+\sin^2C\cos^2B\sin(2B)\] \[\frac{\sin(2A)}{2}=\sin^2B(1-\sin^2C)\sin(2C)+\sin^2C(1-\sin^2B)\sin(2B)\] (to be finished)