Difference between revisions of "2018 AIME I Problems/Problem 5"

m (Solution)
m (Solution)
Line 4: Line 4:
  
 
==Solution==
 
==Solution==
Using the log property <math>\log_{a^n}b^n = \log_{a}b</math>, we note that <math>(2x+y)^2 = 4x^2+4xy+y^2</math>.  
+
Using the logarithmic property <math>\log_{a^n}b^n = \log_{a}b</math>, we note that <math>(2x+y)^2 = 4x^2+4xy+y^2</math>.  
 
That gives <math>x^2+xy-2y^2=0</math> upon simplification and division by <math>3</math>. Then, <math>x=y</math> or <math>x=-2y</math>.
 
That gives <math>x^2+xy-2y^2=0</math> upon simplification and division by <math>3</math>. Then, <math>x=y</math> or <math>x=-2y</math>.
 
From the second equation, <math>9x^2+6xy+y^2=3x^2+4xy+Ky^2</math>. If we take <math>x=y</math>, we see that <math>K=9</math>. If we take <math>x=-2y</math>, we see that <math>K=21</math>. The product is <math>\boxed{189}</math>.
 
From the second equation, <math>9x^2+6xy+y^2=3x^2+4xy+Ky^2</math>. If we take <math>x=y</math>, we see that <math>K=9</math>. If we take <math>x=-2y</math>, we see that <math>K=21</math>. The product is <math>\boxed{189}</math>.

Revision as of 22:59, 12 February 2019

Problem 5

For each ordered pair of real numbers $(x,y)$ satisfying \[\log_2(2x+y) = \log_4(x^2+xy+7y^2)\]there is a real number $K$ such that \[\log_3(3x+y) = \log_9(3x^2+4xy+Ky^2).\]Find the product of all possible values of $K$.

Solution

Using the logarithmic property $\log_{a^n}b^n = \log_{a}b$, we note that $(2x+y)^2 = 4x^2+4xy+y^2$. That gives $x^2+xy-2y^2=0$ upon simplification and division by $3$. Then, $x=y$ or $x=-2y$. From the second equation, $9x^2+6xy+y^2=3x^2+4xy+Ky^2$. If we take $x=y$, we see that $K=9$. If we take $x=-2y$, we see that $K=21$. The product is $\boxed{189}$.

-expiLnCalc

Note

The cases $x=y$ and $x=-2y$ can be found by SFFT (Simon's Favorite Factoring Trick) from $x^2+xy-2y^2=0 \implies (x+2y)(x-y)=0$.

See Also

2018 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS