# 2018 AIME I Problems/Problem 8

Let $ABCDEF$ be an equiangular hexagon such that $AB=6, BC=8, CD=10$, and $DE=12$. Denote by $d$ the diameter of the largest circle that fits inside the hexagon. Find $d^2$.

## Solution 1

- cooljoseph

First of all, draw a good diagram! This is always the key to solving any geometry problem. Once you draw it, realize that $EF=2, FA=16$. Why? Because since the hexagon is equiangular, we can put an equilateral triangle around it, with side length $6+8+10=24$. Then, if you drew it to scale, notice that the "widest" this circle can be according to $AF, CD$ is $7\sqrt{3}$. And it will be obvious that the sides won't be inside the circle, so our answer is $\boxed{147}$.

-expiLnCalc

## Solution 2

Like solution 1, draw out the large equilateral triangle with side length $24$. Let the tangent point of the circle at $\overline{CD}$ be G and the tangent point of the circle at $\overline{AF}$ be H. Clearly, GH is the diameter of our circle, and is also perpendicular to $\overline{CD}$ and $\overline{AF}$.

The equilateral triangle of side length $10$ is similar to our large equilateral triangle of $24$. And the height of the former equilateral triangle is $\sqrt{10^2-5^2}=5\sqrt{3}$. By our similarity condition, $\frac{10}{24}=\frac{5\sqrt{3}}{d+5\sqrt{3}}$

Solving this equation gives $d=7\sqrt{3}$, and $d^2=\boxed{147}$

~novus677

## See Also

 2018 AIME I (Problems • Answer Key • Resources) Preceded byProblem 7 Followed byProblem 9 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS