# Difference between revisions of "2018 AMC 10A Problems/Problem 19"

(→Solution) |
(→Solution) |
||

Line 23: | Line 23: | ||

<cmath>1*9=9</cmath> | <cmath>1*9=9</cmath> | ||

We see that the units digit of <math>9^z</math>, for some integer <math>z</math>, is <math>1</math> only when <math>z</math> is an even number. From the <math>20</math> numbers in <math>B</math>, we see that exactly half of them are even. The probability in this case is <math>\frac{1}{5}*\frac{1}{2}=\frac{1}{10}.</math> | We see that the units digit of <math>9^z</math>, for some integer <math>z</math>, is <math>1</math> only when <math>z</math> is an even number. From the <math>20</math> numbers in <math>B</math>, we see that exactly half of them are even. The probability in this case is <math>\frac{1}{5}*\frac{1}{2}=\frac{1}{10}.</math> | ||

− | Finally, we can | + | Finally, we can add all of our probabilities together to get |

<cmath>\frac{1}{5}+\frac{1}{20}+\frac{1}{20}+\frac{1}{10}=\boxed{\frac{2}{5}}.</cmath> | <cmath>\frac{1}{5}+\frac{1}{20}+\frac{1}{20}+\frac{1}{10}=\boxed{\frac{2}{5}}.</cmath> | ||

~Nivek | ~Nivek |

## Revision as of 16:39, 8 February 2018

A number is randomly selected from the set , and a number is randomly selected from . What is the probability that has a units digit of ?

## Solution

Since we only care about the unit digit, our set can be turned into . Call this set and call set . Let's do casework on the element of that we choose. Since , any number from can be paired with to make have a units digit of . Therefore, the probability of this case happening is since there is a chance that the number is selected from . Let us consider the case where the number is selected from . Let's look at the unit digit when we repeatedly multiply the number by itself: We see that the unit digit of , for some integer , will only be when is a multiple of . Now, let's count how many numbers in are divisible by . This can be done by simply listing: There are numbers in divisible by out of the total numbers. Therefore, the probability that is picked from and a number divisible by is picked from is . Similarly, we can look at the repeating units digit for : We see that the unit digit of , for some integer , will only be when is a multiple of . This is exactly the same conditions as our last case with so the probability of this case is also . Since and ends in , the units digit of , for some integer, will always be . Thus, the probability in this case is . The last case we need to consider is when the number is chosen from . This happens with probability . We list out the repeating units digit for as we have done for and : We see that the units digit of , for some integer , is only when is an even number. From the numbers in , we see that exactly half of them are even. The probability in this case is Finally, we can add all of our probabilities together to get

~Nivek