Difference between revisions of "2019 AMC 10A Problems/Problem 2"

(Video Solution)
(Solution)
Line 3: Line 3:
  
 
<math>\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }4\qquad\textbf{(E) }5</math>
 
<math>\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }4\qquad\textbf{(E) }5</math>
 
== Solution ==
 
 
The last three digits of <math>n!</math> for all <math>n\geq15</math> are <math>000</math>, because there are at least three <math>2</math>s and three <math>5</math>s in its prime factorization. Because <math>0-0=0</math>, the answer is <math>\boxed{\textbf{(A) }0}</math>.
 
  
 
==Video Solution 1==
 
==Video Solution 1==

Revision as of 05:40, 1 January 2021

Problem

What is the hundreds digit of $(20!-15!)?$

$\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }4\qquad\textbf{(E) }5$

Video Solution 1

https://youtu.be/J4Bqztwjyxw

Education, The Study of Everything


Video Solution 2

https://youtu.be/V1fY0oLSHvo

~savannahsolver

See Also

2019 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS