Difference between revisions of "2021 AIME I Problems"

(Problem 8)
(Problem 9)
Line 5: Line 5:
  
 
WTF
 
WTF
 
==Problem 9==
 
Let <math>ABCD</math> be an isosceles trapezoid with <math>AD=BC</math> and <math>AB<CD.</math> Suppose that the distances from <math>A</math> to the lines <math>BC,CD,</math> and <math>BD</math> are <math>15,18,</math> and <math>10,</math> respectively. Let <math>K</math> be the area of <math>ABCD.</math> Find <math>\sqrt2 \cdot K.</math>
 
 
[[2021 AIME I Problems/Problem 9|Solution]]
 
  
 
==Problem 10==
 
==Problem 10==

Revision as of 17:06, 12 March 2021

2021 AIME I (Answer Key)
Printable version | AoPS Contest Collections

Instructions

  1. This is a 15-question, 3-hour examination. All answers are integers ranging from $000$ to $999$, inclusive. Your score will be the number of correct answers; i.e., there is neither partial credit nor a penalty for wrong answers.
  2. No aids other than scratch paper, graph paper, ruler, compass, and protractor are permitted. In particular, calculators and computers are not permitted.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

WTF

WTF

WTF

Problem 10

Consider the sequence $(a_k)_{k\ge 1}$ of positive rational numbers defined by $a_1 = \frac{2020}{2021}$ and for $k\ge 1$, if $a_k = \frac{m}{n}$ for relatively prime positive integers $m$ and $n$, then

\[a_{k+1} = \frac{m + 18}{n+19}.\]Determine the sum of all positive integers $j$ such that the rational number $a_j$ can be written in the form $\frac{t}{t+1}$ for some positive integer $t$.

Solution

Problem 11

Let $ABCD$ be a cyclic quadrilateral with $AB=4,BC=5,CD=6,$ and $DA=7$. Let $A_1$ and $C_1$ be the feet of the perpendiculars from $A$ and $C$, respectively, to line $BD,$ and let $B_1$ and $D_1$ be the feet of the perpendiculars from $B$ and $D,$ respectively, to line $AC$. The perimeter of $A_1B_1C_1D_1$ is $\frac mn$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution

Problem 12

Let $A_1A_2A_3...A_{12}$ be a dodecagon (12-gon). Three frogs initially sit at $A_4,A_8,$ and $A_{12}$. At the end of each minute, simultaneously, each of the three frogs jumps to one of the two vertices adjacent to its current position, chosen randomly and independently with both choices being equally likely. All three frogs stop jumping as soon as two frogs arrive at the same vertex at the same time. The expected number of minutes until the frogs stop jumping is $\frac mn$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution

Problem 13

Circles $\omega_1$ and $\omega_2$ with radii $961$ and $625$, respectively, intersect at distinct points $A$ and $B$. A third circle $\omega$ is externally tangent to both $\omega_1$ and $\omega_2$. Suppose line $AB$ intersects $\omega$ at two points $P$ and $Q$ such that the measure of minor arc $\widehat{PQ}$ is $120^{\circ}$. Find the distance between the centers of $\omega_1$ and $\omega_2$.

Solution

Problem 14

For any positive integer $a,$ $\sigma(a)$ denotes the sum of the positive integer divisors of $a$. Let $n$ be the least positive integer such that $\sigma(a^n)-1$ is divisible by $2021$ for all positive integers $a$. Find the sum of the prime factors in the prime factorization of $n$.

Solution

Problem 15

Let $S$ be the set of positive integers $k$ such that the two parabolas\[y=x^2-k~~\text{and}~~x=2(y-20)^2-k\]intersect in four distinct points, and these four points lie on a circle with radius at most $21$. Find the sum of the least element of $S$ and the greatest element of $S$.

Solution

See also

2021 AIME I (ProblemsAnswer KeyResources)
Preceded by
2020 AIME II
Followed by
2021 AIME II
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS