2022 AMC 10A Problems/Problem 7

Revision as of 13:29, 8 February 2024 by MRENTHUSIASM (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
The following problem is from both the 2022 AMC 10A #7 and 2022 AMC 12A #4, so both problems redirect to this page.

Problem

The least common multiple of a positive integer $n$ and $18$ is $180$, and the greatest common divisor of $n$ and $45$ is $15$. What is the sum of the digits of $n$?

$\textbf{(A) } 3 \qquad \textbf{(B) } 6 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 9 \qquad \textbf{(E) } 12$

Solution 1

Note that \begin{align*} 18 &= 2\cdot3^2, \\ 180 &= 2^2\cdot3^2\cdot5, \\ 45 &= 3^2\cdot5 \\ 15 &= 3\cdot5. \end{align*} Let $n = 2^a\cdot3^b\cdot5^c.$ It follows that:

  1. From the least common multiple condition, we have \[\operatorname{lcm}(n,18) = \operatorname{lcm}(2^a\cdot3^b\cdot5^c,2\cdot3^2) = 2^{\max(a,1)}\cdot3^{\max(b,2)}\cdot5^{\max(c,0)} = 2^2\cdot3^2\cdot5,\] from which $a=2, b\in\{0,1,2\},$ and $c=1.$
  2. From the greatest common divisor condition, we have \[\gcd(n,45) = \gcd(2^2\cdot3^b\cdot5,3^2\cdot5) = 2^{\min(2,0)}\cdot3^{\min(b,2)}\cdot5^{\min(1,1)} = 3\cdot5,\] from which $b=1.$

Together, we conclude that $n=2^2\cdot3\cdot5=60.$ The sum of its digits is $6+0=\boxed{\textbf{(B) } 6}.$

~MRENTHUSIASM ~USAMO333

Solution 2

The options for $\text{lcm}(x, 18)=180$ are $20$, $60$, and $180$. The options for $\text{gcd}(y, 45)=15$ are $15$, $30$, $60$, $75$, etc. We see that $60$ appears in both lists; therefore, $6+0=\boxed{\textbf{(B) } 6}$.

~MrThinker

Remark

If you ignore or mess up the LCM, and get $n=15$, you'll still get the correct answer.

Video Solution 1

https://youtu.be/YI1E8C3ZX-U

~Education, the Study of Everything

Video Solution 2

https://youtu.be/q2y-Wfdi4q8

~savannahsolver

Video Solution 3 (Smart and Simple)

https://youtu.be/7yAh4MtJ8a8?si=o-aImrVOwbH1HoZv&t=673

~Math-X

Video Solution 4

https://youtu.be/5KAiNlqbrsQ

See Also

2022 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2022 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png