Difference between revisions of "2022 AMC 12A Problems/Problem 3"

(Video Solution (Smart and simple))
 
(36 intermediate revisions by 8 users not shown)
Line 1: Line 1:
The square's area is the sum of the areas of the five smaller rectangles. This is 1*6 + 2*4 + 5*6 + 2*7 + 2*3 = 64, so the square has side length 8. The square's perimeter is therefore 32. Its perimeter can also be expressed as the sum of the width and height of the four outer rectangles. Adding up the width and height of all rectangles combined gives us 1 + 6 + 2 + 4 + 5 + 6 + 2 + 7 + 2 + 3 = 38, so adding up the width and height of the inner rectangle must give us 38 - 32 = 6. Only the 2x4 rectangle has dimensions that add up to 6, so our answer is B.
+
==Problem==
 +
 
 +
Five rectangles, <math>A</math>, <math>B</math>, <math>C</math>, <math>D</math>, and <math>E</math>, are arranged in a square as shown below. These rectangles have dimensions <math>1\times6</math>, <math>2\times4</math>, <math>5\times6</math>, <math>2\times7</math>, and <math>2\times3</math>, respectively. (The figure is not drawn to scale.) Which of the five rectangles is the shaded one in the middle?
 +
<asy>
 +
size(150);
 +
currentpen = black+1.25bp;
 +
fill((3,2.5)--(3,4.5)--(5.3,4.5)--(5.3,2.5)--cycle,gray);
 +
draw((0,0)--(7,0)--(7,7)--(0,7)--(0,0));
 +
draw((3,0)--(3,4.5));
 +
draw((0,4.5)--(5.3,4.5));
 +
draw((5.3,7)--(5.3,2.5));
 +
draw((7,2.5)--(3,2.5));
 +
</asy>
 +
<math>\textbf{(A) }A\qquad\textbf{(B) }B \qquad\textbf{(C) }C \qquad\textbf{(D) }D\qquad\textbf{(E) }E</math>
 +
 
 +
==Solution 1 (Area and Perimeter of Square)==
 +
 
 +
The area of this square is equal to <math>6 + 8 + 30 + 14 + 6 = 64</math>, and thus its side lengths are <math>8</math>. The sum of the dimensions of the rectangles are <math>2 + 7 + 5 + 6 + 2 + 3 + 1 + 6 + 2 + 4 = 38</math>. Thus, because the perimeter of the rectangle is <math>32</math>, the rectangle on the inside must have a perimeter of <math>6 \cdot 2 = 12</math>. The only rectangle that works is <math>\boxed{\textbf{(B) }B}</math>.
 +
 
 +
~mathboy100
 +
 
 +
==Solution 2 (Perimeter of Square)==
 +
 
 +
Note that the perimeter of the square is the sum of four pairs of dimensions (eight values are added). Adding up all dimensions gives us <math>2+7+5+6+2+3+1+6+2+4=38</math>. We know that as the square's side length is an integer, the perimeter must be divisible by <math>4</math>. Testing out by subtracting all five pairs of dimensions from <math>38</math>, only <math>2\times4</math> works since <math>38-2-4=32=8\cdot4</math>, which corresponds with <math>\boxed{\textbf{(B) }B}</math>.
 +
 
 +
~iluvme
 +
 
 +
==Solution 3 (Observations)==
 +
Note that rectangle <math>D</math> must be on the edge. Without loss of generality, let the top-left rectangle be <math>D,</math> as shown below:
 +
<asy>
 +
size(175);
 +
currentpen = black+1.25bp;
 +
fill((3,2.5)--(3,4.5)--(5.3,4.5)--(5.3,2.5)--cycle,gray);
 +
draw((0,0)--(7,0)--(7,7)--(0,7)--(0,0));
 +
draw((3,0)--(3,4.5));
 +
draw((0,4.5)--(5.3,4.5));
 +
draw((5.3,7)--(5.3,2.5));
 +
draw((7,2.5)--(3,2.5));
 +
label("$7$",midpoint((0,7)--(5.3,7)),N,blue);
 +
label("$x$",midpoint((5.3,7)--(7,7)),N,blue);
 +
label("$2$",midpoint((0,4.5)--(0,7)),W,blue);
 +
label("$x+5$",midpoint((0,0)--(0,4.5)),W,blue);
 +
label("$D$",midpoint((0,7)--(5.3,4.5)),red);
 +
</asy>
 +
It is clear that <math>x=1,</math> so we can determine Rectangle <math>A.</math>
 +
 
 +
Continuing with a similar process, we can determine Rectangles <math>C,E,</math> and <math>B,</math> in this order. The answer is <math>\boxed{\textbf{(B) }B}</math> as shown below.
 +
<asy>
 +
size(175);
 +
currentpen = black+1.25bp;
 +
fill((3,2.5)--(3,4.5)--(5.3,4.5)--(5.3,2.5)--cycle,gray);
 +
draw((0,0)--(7,0)--(7,7)--(0,7)--(0,0));
 +
draw((3,0)--(3,4.5));
 +
draw((0,4.5)--(5.3,4.5));
 +
draw((5.3,7)--(5.3,2.5));
 +
draw((7,2.5)--(3,2.5));
 +
label("$7$",midpoint((0,7)--(5.3,7)),N,blue);
 +
label("$1$",midpoint((5.3,7)--(7,7)),N,blue);
 +
label("$2$",midpoint((0,4.5)--(0,7)),W,blue);
 +
label("$6$",midpoint((0,0)--(0,4.5)),W,blue);
 +
label("$6$",midpoint((7,7)--(7,2.5)),E,blue);
 +
label("$2$",midpoint((7,2.5)--(7,0)),E,blue);
 +
label("$2$",midpoint((5.3,4.5)--(5.3,7)),E,blue);
 +
label("$4$",midpoint((5.3,4.5)--(5.3,2.5)),E,blue);
 +
label("$1$",midpoint((5.3,2.5)--(7,2.5)),S,blue);
 +
label("$5$",midpoint((0,4.5)--(3,4.5)),N,blue);
 +
label("$2$",midpoint((3,4.5)--(5.3,4.5)),N,blue);
 +
label("$5$",midpoint((0,0)--(3,0)),S,blue);
 +
label("$3$",midpoint((3,0)--(7,0)),S,blue);
 +
label("$2$",midpoint((3,0)--(3,2.5)),W,blue);
 +
label("$4$",midpoint((3,2.5)--(3,4.5)),W,blue);
 +
label("$2$",midpoint((3,2.5)--(5.3,2.5)),S,blue);
 +
label("$D$",midpoint((0,7)--(5.3,4.5)),red);
 +
label("$A$",midpoint((5.3,7)--(7,2.5)),red);
 +
label("$C$",midpoint((0,4.5)--(3,0)),red);
 +
label("$E$",midpoint((3,2.5)--(7,0)),red);
 +
label("$B$",midpoint((3,4.5)--(5.3,2.5)),red);
 +
</asy>
 +
~MRENTHUSIASM
 +
 
 +
==Solution 4 (Observations)==
 +
Let's label some points:
 +
<asy>
 +
size(175);
 +
currentpen = black+1.25bp;
 +
fill((3,2.5)--(3,4.5)--(5.3,4.5)--(5.3,2.5)--cycle,gray);
 +
draw((0,0)--(7,0)--(7,7)--(0,7)--(0,0));
 +
draw((3,0)--(3,4.5));
 +
draw((0,4.5)--(5.3,4.5));
 +
draw((5.3,7)--(5.3,2.5));
 +
draw((7,2.5)--(3,2.5));
 +
 
 +
label("$A$",(0,0),SW);
 +
label("$B$",(3,0),S);
 +
label("$C$",(7,0),SE);
 +
label("$D$",(7,2.5),(1,0));
 +
label("$E$",(7,7),NE);
 +
label("$F$",(5.5,7),N);
 +
label("$G$",(0,7),NW);
 +
label("$H$",(0,4.5),W);
 +
</asy>
 +
By finding the dimensions of the middle rectangle, we need to find the dimensions of the other four rectangles. We have a rule: <cmath>AB + BC = CD + DE = EF + FG = GH + AH.</cmath>
 +
Let's make a list of all dimensions of the rectangles from the diagram. We have to fill in the dimensions from up above, but still apply to the rule:
 +
<cmath>\begin{align*}
 +
AB&\times AH \\
 +
CD&\times BC \\
 +
EF&\times DE \\
 +
GH&\times FG
 +
\end{align*}</cmath>
 +
By applying the rule, we get <math>AB=2, BC=6, CD=5, DE=3, EF=2, FG=6, GH=1</math>, and <math>AH=7</math>.
 +
 
 +
By substitution, we get this list
 +
<cmath>\begin{align*}
 +
2&\times 7 \\
 +
5&\times 6 \\
 +
2&\times 3 \\
 +
1&\times 6 \\
 +
\end{align*}</cmath>
 +
(This also tells us that the diagram is not drawn to scale.)
 +
 
 +
Notice how the only dimension not used in the list was <math>2\times 4</math> and that corresponds with B so the answer is, <math>\boxed{\textbf{(B) }B}.</math>
 +
 
 +
~ghfhgvghj10 & Education, the study of everything.
 +
 
 +
==Video Solution (CREATIVE THINKING)==
 +
https://youtu.be/YNJ_0dq7gU4
 +
 
 +
~Education, the Study of Everything
 +
 
 +
==Video Solution (Smart and Simple)==
 +
https://youtu.be/7yAh4MtJ8a8?si=mFXNAtcL16AYj139&t=445
 +
 
 +
~Math-X
 +
 
 +
==See Also==
 +
{{AMC12 box|year=2022|ab=A|num-b=2|num-a=4}}
 +
{{MAA Notice}}

Latest revision as of 23:40, 25 October 2023

Problem

Five rectangles, $A$, $B$, $C$, $D$, and $E$, are arranged in a square as shown below. These rectangles have dimensions $1\times6$, $2\times4$, $5\times6$, $2\times7$, and $2\times3$, respectively. (The figure is not drawn to scale.) Which of the five rectangles is the shaded one in the middle? [asy] size(150); currentpen = black+1.25bp; fill((3,2.5)--(3,4.5)--(5.3,4.5)--(5.3,2.5)--cycle,gray); draw((0,0)--(7,0)--(7,7)--(0,7)--(0,0)); draw((3,0)--(3,4.5)); draw((0,4.5)--(5.3,4.5)); draw((5.3,7)--(5.3,2.5)); draw((7,2.5)--(3,2.5)); [/asy] $\textbf{(A) }A\qquad\textbf{(B) }B \qquad\textbf{(C) }C \qquad\textbf{(D) }D\qquad\textbf{(E) }E$

Solution 1 (Area and Perimeter of Square)

The area of this square is equal to $6 + 8 + 30 + 14 + 6 = 64$, and thus its side lengths are $8$. The sum of the dimensions of the rectangles are $2 + 7 + 5 + 6 + 2 + 3 + 1 + 6 + 2 + 4 = 38$. Thus, because the perimeter of the rectangle is $32$, the rectangle on the inside must have a perimeter of $6 \cdot 2 = 12$. The only rectangle that works is $\boxed{\textbf{(B) }B}$.

~mathboy100

Solution 2 (Perimeter of Square)

Note that the perimeter of the square is the sum of four pairs of dimensions (eight values are added). Adding up all dimensions gives us $2+7+5+6+2+3+1+6+2+4=38$. We know that as the square's side length is an integer, the perimeter must be divisible by $4$. Testing out by subtracting all five pairs of dimensions from $38$, only $2\times4$ works since $38-2-4=32=8\cdot4$, which corresponds with $\boxed{\textbf{(B) }B}$.

~iluvme

Solution 3 (Observations)

Note that rectangle $D$ must be on the edge. Without loss of generality, let the top-left rectangle be $D,$ as shown below: [asy] size(175); currentpen = black+1.25bp; fill((3,2.5)--(3,4.5)--(5.3,4.5)--(5.3,2.5)--cycle,gray); draw((0,0)--(7,0)--(7,7)--(0,7)--(0,0)); draw((3,0)--(3,4.5)); draw((0,4.5)--(5.3,4.5)); draw((5.3,7)--(5.3,2.5)); draw((7,2.5)--(3,2.5)); label("$7$",midpoint((0,7)--(5.3,7)),N,blue); label("$x$",midpoint((5.3,7)--(7,7)),N,blue); label("$2$",midpoint((0,4.5)--(0,7)),W,blue); label("$x+5$",midpoint((0,0)--(0,4.5)),W,blue); label("$D$",midpoint((0,7)--(5.3,4.5)),red); [/asy] It is clear that $x=1,$ so we can determine Rectangle $A.$

Continuing with a similar process, we can determine Rectangles $C,E,$ and $B,$ in this order. The answer is $\boxed{\textbf{(B) }B}$ as shown below. [asy] size(175); currentpen = black+1.25bp; fill((3,2.5)--(3,4.5)--(5.3,4.5)--(5.3,2.5)--cycle,gray); draw((0,0)--(7,0)--(7,7)--(0,7)--(0,0)); draw((3,0)--(3,4.5)); draw((0,4.5)--(5.3,4.5)); draw((5.3,7)--(5.3,2.5)); draw((7,2.5)--(3,2.5)); label("$7$",midpoint((0,7)--(5.3,7)),N,blue); label("$1$",midpoint((5.3,7)--(7,7)),N,blue); label("$2$",midpoint((0,4.5)--(0,7)),W,blue); label("$6$",midpoint((0,0)--(0,4.5)),W,blue); label("$6$",midpoint((7,7)--(7,2.5)),E,blue); label("$2$",midpoint((7,2.5)--(7,0)),E,blue); label("$2$",midpoint((5.3,4.5)--(5.3,7)),E,blue); label("$4$",midpoint((5.3,4.5)--(5.3,2.5)),E,blue); label("$1$",midpoint((5.3,2.5)--(7,2.5)),S,blue); label("$5$",midpoint((0,4.5)--(3,4.5)),N,blue); label("$2$",midpoint((3,4.5)--(5.3,4.5)),N,blue); label("$5$",midpoint((0,0)--(3,0)),S,blue); label("$3$",midpoint((3,0)--(7,0)),S,blue); label("$2$",midpoint((3,0)--(3,2.5)),W,blue); label("$4$",midpoint((3,2.5)--(3,4.5)),W,blue); label("$2$",midpoint((3,2.5)--(5.3,2.5)),S,blue); label("$D$",midpoint((0,7)--(5.3,4.5)),red); label("$A$",midpoint((5.3,7)--(7,2.5)),red); label("$C$",midpoint((0,4.5)--(3,0)),red); label("$E$",midpoint((3,2.5)--(7,0)),red); label("$B$",midpoint((3,4.5)--(5.3,2.5)),red); [/asy] ~MRENTHUSIASM

Solution 4 (Observations)

Let's label some points: [asy] size(175); currentpen = black+1.25bp; fill((3,2.5)--(3,4.5)--(5.3,4.5)--(5.3,2.5)--cycle,gray); draw((0,0)--(7,0)--(7,7)--(0,7)--(0,0)); draw((3,0)--(3,4.5)); draw((0,4.5)--(5.3,4.5)); draw((5.3,7)--(5.3,2.5)); draw((7,2.5)--(3,2.5));  label("$A$",(0,0),SW); label("$B$",(3,0),S); label("$C$",(7,0),SE); label("$D$",(7,2.5),(1,0)); label("$E$",(7,7),NE); label("$F$",(5.5,7),N); label("$G$",(0,7),NW); label("$H$",(0,4.5),W); [/asy] By finding the dimensions of the middle rectangle, we need to find the dimensions of the other four rectangles. We have a rule: \[AB + BC = CD + DE = EF + FG = GH + AH.\] Let's make a list of all dimensions of the rectangles from the diagram. We have to fill in the dimensions from up above, but still apply to the rule: \begin{align*} AB&\times AH \\ CD&\times BC \\ EF&\times DE \\ GH&\times FG \end{align*} By applying the rule, we get $AB=2, BC=6, CD=5, DE=3, EF=2, FG=6, GH=1$, and $AH=7$.

By substitution, we get this list \begin{align*} 2&\times 7 \\ 5&\times 6 \\ 2&\times 3 \\ 1&\times 6 \\ \end{align*} (This also tells us that the diagram is not drawn to scale.)

Notice how the only dimension not used in the list was $2\times 4$ and that corresponds with B so the answer is, $\boxed{\textbf{(B) }B}.$

~ghfhgvghj10 & Education, the study of everything.

Video Solution (CREATIVE THINKING)

https://youtu.be/YNJ_0dq7gU4

~Education, the Study of Everything

Video Solution (Smart and Simple)

https://youtu.be/7yAh4MtJ8a8?si=mFXNAtcL16AYj139&t=445

~Math-X

See Also

2022 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png