Difference between revisions of "2024 AIME II Problems/Problem 4"

(Solution 1)
Line 15: Line 15:
  
 
Now, we can solve to get <math>a = \frac{-7}{24}, b = \frac{-9}{24}, c = \frac{-5}{12}</math>. Plugging these values in, we obtain <math>|4a + 3b + 2c|  = \frac{25}{8} \implies \boxed{033}</math>. ~akliu
 
Now, we can solve to get <math>a = \frac{-7}{24}, b = \frac{-9}{24}, c = \frac{-5}{12}</math>. Plugging these values in, we obtain <math>|4a + 3b + 2c|  = \frac{25}{8} \implies \boxed{033}</math>. ~akliu
 +
 +
 +
==See also==
 +
{{AIME box|year=2024|num-b=3|num-a=5|n=II}}
 +
 +
[[Category:]]
 +
{{MAA Notice}}

Revision as of 21:52, 8 February 2024

Problem

Let $x,y$ and $z$ be positive real numbers that satisfy the following system of equations: \[\log_2\left({x \over yz}\right) = {1 \over 2}\]\[\log_2\left({y \over xz}\right) = {1 \over 3}\]\[\log_2\left({z \over xy}\right) = {1 \over 4}\] Then the value of $\left|\log_2(x^4y^3z^2)\right|$ is ${m \over n}$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution 1

Denote $\log_2(x) = a$, $\log_2(y) = b$, and $\log_2(z) = c$.

Then, we have: $a-b-c = \frac{1}{2}$ $-a+b-c = \frac{1}{3}$ $-a-b+c = \frac{1}{4}$

Now, we can solve to get $a = \frac{-7}{24}, b = \frac{-9}{24}, c = \frac{-5}{12}$. Plugging these values in, we obtain $|4a + 3b + 2c|  = \frac{25}{8} \implies \boxed{033}$. ~akliu


See also

2024 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

[[Category:]] The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png