Difference between revisions of "AoPS Wiki talk:Problem of the Day/June 21, 2011"

(latex errors)
(Third Solution)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 
{{:AoPSWiki:Problem of the Day/June 21, 2011}}
 
{{:AoPSWiki:Problem of the Day/June 21, 2011}}
==Solution==
+
==Solutions==
 +
=== First Solution ===
 
<math>(2x+3y)^2 + (3x-2y)^2 = 13(x^2+y^2)=26</math>.  Hence <math>(2x+3y)^2 \le 26</math> or <math>2x+3y = \sqrt{26}</math>.
 
<math>(2x+3y)^2 + (3x-2y)^2 = 13(x^2+y^2)=26</math>.  Hence <math>(2x+3y)^2 \le 26</math> or <math>2x+3y = \sqrt{26}</math>.
If <math>3x-2y=0</math> and <math>2x+3y=\sqrt{26}</math>, then <math>2x+3y</math> attains this maximum value on the circle <math>x^2+y^2=2</math>.
+
If <math>3x-2y=0</math> and <math>2x+3y=\boxed{\sqrt{26}}</math>, then <math>2x+3y</math> attains this maximum value on the circle <math>x^2+y^2=2</math>.
 +
=== Second Solution ===
 +
Let <math>x</math> and <math>y</math> be real numbers such that <math>x^2+y^2=2</math>. Note that
 +
<cmath>|x|^2+|y|^2=2 \text{ and } 2|x|+3|y|\ge 2x+3y</cmath>
 +
thus, we may assume that <math>x</math> and <math>y</math> are positive. Furthermore, by the [[Cauchy-Schwarz Inequality]], we have
 +
<cmath>(4+9)(x^2+y^2)\ge (2x+3y)^2</cmath>
 +
but since <math>x^2+y^2=2</math>, the inequality is equivalent with
 +
<cmath>26\ge (2x+3y)^2</cmath>
 +
or
 +
<cmath>\sqrt{26}\ge 2x+3y</cmath>
 +
so the maximum is <math>\boxed{\sqrt{26}}</math> and it is reached when <math>\frac{4}{x^2}=\frac{9}{y^2}\implies 2y=3x</math>.
 +
===Third Solution===
 +
Imagine the equations graphed in the coordinate plane. <math> x^2+y^2=2 </math> is a circle centered at the origin with
 +
 
 +
radius <math> \sqrt{2} </math>. <math> 2x+3y=k </math> is a line. We want to find the largest value of <math> k </math> such that the line
 +
 
 +
intersects the circle, giving real number solutions for <math> x </math> and <math> y </math>. This occurs when <math> 2x+3y=k </math> is tangent
 +
 
 +
to the circle, and thus when the distance from the line to the origin is <math> \sqrt{2} </math>. The distance from a point <math>
 +
 
 +
(x_0, y_0) </math> to a line <math> Ax+By+C=0 </math> is
 +
 
 +
 
 +
 
 +
<math> \frac{|Ax_0+By_0+C|}{\sqrt{A^2+B^2}} </math>.
 +
 
 +
 
 +
 
 +
Plugging in <math> A=2, B=3, C=-k, x_0=0 </math>, and <math> y_0=0 </math> and setting the expression equal to <math> \sqrt{2} </math> yields
 +
 
 +
<math> \pm\frac{k}{\sqrt{13}}=\sqrt{2} </math>, or <math> k=\pm\sqrt{26} </math>. We want the largest value of <math> k </math>, so
 +
 
 +
<math> k=\boxed{\sqrt{26}} </math> is the highest possible value.
 +
 
 +
=== Fourth Solution ===
 +
By [[Root-Mean Square-Arithmetic Mean-Geometric Mean-Harmonic mean Inequality|AM-QM]], <math>\frac{2x + 3y}{13} = \frac{4 \cdot \frac{x}{2} + 9 \cdot \frac{y}{3}}{13} \le \sqrt{\frac{4 \cdot \left(\frac{x}{2}\right)^2 + 9 \left(\frac{y}{3}\right)^2}{13}} = \sqrt{\frac{2}{13}}</math>, so <math>2x + 3y \le \sqrt{26}</math>, equality when <math>\frac x2 = \frac y3</math>.

Latest revision as of 16:14, 22 June 2011

Problem

AoPSWiki:Problem of the Day/June 21, 2011

Solutions

First Solution

$(2x+3y)^2 + (3x-2y)^2 = 13(x^2+y^2)=26$. Hence $(2x+3y)^2 \le 26$ or $2x+3y = \sqrt{26}$. If $3x-2y=0$ and $2x+3y=\boxed{\sqrt{26}}$, then $2x+3y$ attains this maximum value on the circle $x^2+y^2=2$.

Second Solution

Let $x$ and $y$ be real numbers such that $x^2+y^2=2$. Note that \[|x|^2+|y|^2=2 \text{ and } 2|x|+3|y|\ge 2x+3y\] thus, we may assume that $x$ and $y$ are positive. Furthermore, by the Cauchy-Schwarz Inequality, we have \[(4+9)(x^2+y^2)\ge (2x+3y)^2\] but since $x^2+y^2=2$, the inequality is equivalent with \[26\ge (2x+3y)^2\] or \[\sqrt{26}\ge 2x+3y\] so the maximum is $\boxed{\sqrt{26}}$ and it is reached when $\frac{4}{x^2}=\frac{9}{y^2}\implies 2y=3x$.

Third Solution

Imagine the equations graphed in the coordinate plane. $x^2+y^2=2$ is a circle centered at the origin with

radius $\sqrt{2}$. $2x+3y=k$ is a line. We want to find the largest value of $k$ such that the line

intersects the circle, giving real number solutions for $x$ and $y$. This occurs when $2x+3y=k$ is tangent

to the circle, and thus when the distance from the line to the origin is $\sqrt{2}$. The distance from a point $(x_0, y_0)$ to a line $Ax+By+C=0$ is


$\frac{|Ax_0+By_0+C|}{\sqrt{A^2+B^2}}$.


Plugging in $A=2, B=3, C=-k, x_0=0$, and $y_0=0$ and setting the expression equal to $\sqrt{2}$ yields

$\pm\frac{k}{\sqrt{13}}=\sqrt{2}$, or $k=\pm\sqrt{26}$. We want the largest value of $k$, so

$k=\boxed{\sqrt{26}}$ is the highest possible value.

Fourth Solution

By AM-QM, $\frac{2x + 3y}{13} = \frac{4 \cdot \frac{x}{2} + 9 \cdot \frac{y}{3}}{13} \le \sqrt{\frac{4 \cdot \left(\frac{x}{2}\right)^2 + 9 \left(\frac{y}{3}\right)^2}{13}} = \sqrt{\frac{2}{13}}$, so $2x + 3y \le \sqrt{26}$, equality when $\frac x2 = \frac y3$.