Binomial Theorem

Revision as of 08:19, 22 June 2006 by Solafidefarms (talk | contribs) (Clarification. Seemed a bit incognoscible previously.)

First invented by Newton, the Binomial Theorem states that for real or complex a,b,
$(a+b)^n = \sum_{k=0}^{n}{n \choose k}\cdot a^k\cdot b^{n-k}$

This may be shown for the integers easily:

$\displaystyle (a+b)^n=\underbrace{ (a+b)\cdot(a+b)\cdot(a+b)\cdot\cdots\cdot(a+b) }_{n}$


Repeatedly using the distributive property, we see that for a term $\displaystyle a^m b^{n-m}$, we must choose $m$ of the $n$ terms to contribute an $a$ to the term, and then each of the other $n-m$ terms of the product must contribute a $b$. Thus the coefficient of $\displaystyle a^m b^{n-m}$ is $\displaystyle \binom{n}{m}$. Extending this to all possible values of $m$ from $0$ to $n$, we see that $(a+b)^n = \sum_{k=0}^{n}{n \choose k}\cdot a^k\cdot b^{n-k}$.