Center (algebra)

Revision as of 02:48, 12 May 2008 by I like pie (talk | contribs) (Links, minor edits)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In general, the center of an algebraic structure is the set of elements which commute with every of the structure. With magmas (such as groups), this definition is straightforward; for rings and fields, the commutativity in question is multiplicative commutativity.

The center of a group is never empty, as the identity commutes with every element of a group. The center of a group is a subgroup of the group—a normal subgroup, in fact; it is also stable under any endomorphism on the group.

See also

This article is a stub. Help us out by expanding it.

Invalid username
Login to AoPS