Difference between revisions of "De Moivre's Theorem"

m (Undo revision 209937 by Yiyj1 (talk))
(Tag: Undo)
 
(6 intermediate revisions by 3 users not shown)
Line 11: Line 11:
 
(\cos x+i \sin x)^{k+1} & =(\cos x+i \sin x)^{k}(\cos x+i \sin x) & \text { by Exponential laws } \\
 
(\cos x+i \sin x)^{k+1} & =(\cos x+i \sin x)^{k}(\cos x+i \sin x) & \text { by Exponential laws } \\
 
& =[\cos (k x)+i \sin (k x)](\cos x+i \sin x) & \text { by the Assumption in Step II } \\
 
& =[\cos (k x)+i \sin (k x)](\cos x+i \sin x) & \text { by the Assumption in Step II } \\
& =\cos (k x) \cos x-\sin (k x)+i[\cos (k x) \sin x+\sin (k x) \cos x] & \\
+
& =\cos (k x) \cos x-\sin (k x) \sin x+i[\cos (k x) \sin x+\sin (k x) \cos x] & \\
& =\operatorname{cis}(k+1) & \text { Various Trigonometric Identities }
+
& =\operatorname{cis}((k+1)(x)) & \text { Various Trigonometric Identities }
 
\end{align*}</cmath>
 
\end{align*}</cmath>
  
Line 22: Line 22:
  
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
(\operatorname{cis} x)^{n} &=(\operatorname{cis} x)^{-m} && \\
+
(\operatorname{cis} x)^{n} &=(\operatorname{cis} x)^{-m} \\
&=\frac{1}{(\operatorname{cis} x)^{m}} && \\
+
&=\frac{1}{(\operatorname{cis} x)^{m}} \\
&=\frac{1}{\operatorname{cis}(m x)} && \\
+
&=\frac{1}{\operatorname{cis}(m x)} \\
&=\cos (m x)-i \sin (m x) &&\text { rationalization of the denominator } \\
+
&=\cos (m x)-i \sin (m x) & \text { rationalization of the denominator } \\
&=\operatorname{cis}(-m x) && \\
+
&=\operatorname{cis}(-m x) \\
&=\operatorname{cis}(n x) &&
+
&=\operatorname{cis}(n x)  
 
\end{align*}</cmath>
 
\end{align*}</cmath>
  
Line 36: Line 36:
 
==Generalization==
 
==Generalization==
  
 
+
==See Also==
 
[[Category:Theorems]]
 
[[Category:Theorems]]
 
[[Category:Complex numbers]]
 
[[Category:Complex numbers]]

Latest revision as of 01:42, 11 January 2024

DeMoivre's Theorem is a very useful theorem in the mathematical fields of complex numbers. It allows complex numbers in polar form to be easily raised to certain powers. It states that for $x\in\mathbb{R}$ and $n\in\mathbb{Z}$, $\left(\cos x+i\sin x\right)^n=\cos(nx)+i\sin(nx)$.

Proof

This is one proof of De Moivre's theorem by induction.

  • If $n>0$, for $n=1$, the case is obviously true.
Assume true for the case $n=k$. Now, the case of $n=k+1$:

\begin{align*} (\cos x+i \sin x)^{k+1} & =(\cos x+i \sin x)^{k}(\cos x+i \sin x) & \text { by Exponential laws } \\ & =[\cos (k x)+i \sin (k x)](\cos x+i \sin x) & \text { by the Assumption in Step II } \\ & =\cos (k x) \cos x-\sin (k x) \sin x+i[\cos (k x) \sin x+\sin (k x) \cos x] & \\ & =\operatorname{cis}((k+1)(x)) & \text { Various Trigonometric Identities } \end{align*}

Therefore, the result is true for all positive integers $n$.
  • If $n=0$, the formula holds true because $\cos(0x)+i\sin (0x)=1+i0=1$. Since $z^0=1$, the equation holds true.
  • If $n<0$, one must consider $n=-m$ when $m$ is a positive integer.

\begin{align*} (\operatorname{cis} x)^{n} &=(\operatorname{cis} x)^{-m}  \\ &=\frac{1}{(\operatorname{cis} x)^{m}}  \\ &=\frac{1}{\operatorname{cis}(m x)}  \\ &=\cos (m x)-i \sin (m x) & \text { rationalization of the denominator } \\ &=\operatorname{cis}(-m x)  \\ &=\operatorname{cis}(n x)  \end{align*}

And thus, the formula proves true for all integral values of $n$. $\Box$

Note that from the functional equation $f(x)^n = f(nx)$ where $f(x) = \cos x + i\sin x$, we see that $f(x)$ behaves like an exponential function. Indeed, Euler's identity states that $e^{ix} = \cos x+i\sin x$. This extends De Moivre's theorem to all $n\in \mathbb{R}$.

Generalization

See Also