Difference between revisions of "Differences of powers"

(New page: If p is a positive integer and x and y are real numbers, Image:Img2.gif For example, Image:Img3.gif Note that the number of terms in the ''long'' factor is equal to the exponen...)
 
(LaTeX'ed it, now I need to move it to the main article.)
Line 1: Line 1:
 
If p is a positive integer and x and y are real numbers,
 
If p is a positive integer and x and y are real numbers,
  
[[Image:Img2.gif]]
+
<math>x^{p+1}-y^{p+1}=(x-y)(x^p+x^{p-1}y+\cdots +xy^{p-1}+y^p)</math>
  
 
For example,
 
For example,
  
[[Image:Img3.gif]]
+
<math>x^2-y^2=(x-y)(x+y)</math>
 +
 
 +
<math>x^3-y^3=(x-y)(x^2+xy+y^2)</math>
 +
 
 +
<math>x^4-y^4=(x-y)(x^3+x^2y+xy^2+y^3)</math>
  
 
Note that the number of terms in the ''long'' factor is equal to the exponent in the expression being factored.
 
Note that the number of terms in the ''long'' factor is equal to the exponent in the expression being factored.
Line 11: Line 15:
 
An amazing thing happens when x and y differ by 1, say, x = y+1. Then x-y = 1 and  
 
An amazing thing happens when x and y differ by 1, say, x = y+1. Then x-y = 1 and  
  
[[Image:Img4.gif]]
+
<math>x^{p+1}-y^{p+1}=(y+1)^{p+1}-y^{p+1}</math>
 +
 
 +
<math>=(y+1)^p+(y+1)^{p-1}y+\cdots +(y+1)y^{p-1} +y^p</math>.
  
 
For example,
 
For example,
  
[[Image:Img5.gif]]
+
<math>(y+1)^2-y^2=(y+1)+y</math>
 +
 
 +
<math>(y+1)^3-y^3=(y+1)^2+(y+1)y+y^2</math>
 +
 
 +
<math>(y+1)^4-y^4=(y+1)^3+(y+1)^2y+(y+1)y^2+y^3</math>
 +
 
 +
If we also know that <math>y\geq 0</math> then
 +
 
 +
<math>2y\leq (y+1)^2-y^2\leq 2(y+1)</math>
 +
 
 +
<math>3y^2\leq (y+1)^3-y^3\leq 3(y+1)^2</math>
  
If we also know that [[Image:Img6.gif]] then
+
<math>4y^3\leq (y+1)^4-y^4\leq 4(y+1)^3</math>
  
[[Image:Img7.gif]]
+
<math>(p+1)y^p\leq (y+1)^{p+1}-y^{p+1}\leq (p+1)(y+1)^p</math>

Revision as of 09:02, 8 July 2008

If p is a positive integer and x and y are real numbers,

$x^{p+1}-y^{p+1}=(x-y)(x^p+x^{p-1}y+\cdots +xy^{p-1}+y^p)$

For example,

$x^2-y^2=(x-y)(x+y)$

$x^3-y^3=(x-y)(x^2+xy+y^2)$

$x^4-y^4=(x-y)(x^3+x^2y+xy^2+y^3)$

Note that the number of terms in the long factor is equal to the exponent in the expression being factored.

An amazing thing happens when x and y differ by 1, say, x = y+1. Then x-y = 1 and

$x^{p+1}-y^{p+1}=(y+1)^{p+1}-y^{p+1}$

$=(y+1)^p+(y+1)^{p-1}y+\cdots +(y+1)y^{p-1} +y^p$.

For example,

$(y+1)^2-y^2=(y+1)+y$

$(y+1)^3-y^3=(y+1)^2+(y+1)y+y^2$

$(y+1)^4-y^4=(y+1)^3+(y+1)^2y+(y+1)y^2+y^3$

If we also know that $y\geq 0$ then

$2y\leq (y+1)^2-y^2\leq 2(y+1)$

$3y^2\leq (y+1)^3-y^3\leq 3(y+1)^2$

$4y^3\leq (y+1)^4-y^4\leq 4(y+1)^3$

$(p+1)y^p\leq (y+1)^{p+1}-y^{p+1}\leq (p+1)(y+1)^p$