Iff

Revision as of 17:21, 31 July 2020 by Mag1c (talk | contribs) (Gödel)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Iff is an abbreviation for the phrase "if and only if."

In mathematical notation, "iff" is expressed as $\iff$.

It is also known as a biconditional statement.

An iff statement $p\iff q$ means $p\implies q$ and $q\implies p$ at the same time.

Examples

In order to prove a statement of the form "$p$ iff $q$," it is necessary to prove two distinct implications:

  • if $p$ then $q$
  • if $q$ then $p$

Results

Gödel's Incompleteness Theorem

Videos

Mathematical Logic ("I am in process of making a smoother version of this" -themathematicianisin).

See Also

This article is a stub. Help us out by expanding it.

Invalid username
Login to AoPS