Difference between revisions of "Isogonal conjugate"

(Needs diagrams)
 
Line 16: Line 16:
  
 
Given a nonisosceles, nonright triangle <math>ABC,</math> let <math>O</math> denote the center of its circumscribed circle, and let <math>A_1, \, B_1,</math> and <math>C_1</math> be the midpoints of sides <math>BC, \, CA,</math> and <math>AB,</math> respectively.  Point <math>A_2</math> is located on the ray <math>OA_1</math> so that <math>\triangle OAA_1</math> is similar to <math>\triangle OA_2A</math>.  Points <math>B_2</math> and <math>C_2</math> on rays <math>OB_1</math> and <math>OC_1,</math> respectively, are defined similarly.  Prove that lines <math>AA_2, \, BB_2,</math> and <math>CC_2</math> are concurrent, i.e. these three lines intersect at a point. ([[1995 USAMO Problems/Problem 3 |Source]])
 
Given a nonisosceles, nonright triangle <math>ABC,</math> let <math>O</math> denote the center of its circumscribed circle, and let <math>A_1, \, B_1,</math> and <math>C_1</math> be the midpoints of sides <math>BC, \, CA,</math> and <math>AB,</math> respectively.  Point <math>A_2</math> is located on the ray <math>OA_1</math> so that <math>\triangle OAA_1</math> is similar to <math>\triangle OA_2A</math>.  Points <math>B_2</math> and <math>C_2</math> on rays <math>OB_1</math> and <math>OC_1,</math> respectively, are defined similarly.  Prove that lines <math>AA_2, \, BB_2,</math> and <math>CC_2</math> are concurrent, i.e. these three lines intersect at a point. ([[1995 USAMO Problems/Problem 3 |Source]])
 +
 +
Let <math>P</math> be a given point inside quadrilateral <math>ABCD</math>.  Points <math>Q_1</math> and <math>Q_2</math> are located within <math>ABCD</math> such that <math>\angle Q_1 BC = \angle ABP</math>, <math>\angle Q_1 CB = \angle DCP</math>, <math>\angle Q_2 AD = \angle BAP</math>, <math>\angle Q_2 DA = \angle CDP</math>.  Prove that <math>\overline{Q_1 Q_2} \parallel \overline{AB}</math> if and only if <math>\overline{Q_1 Q_2} \parallel \overline{CD}</math>. ([[2011 USAMO Problems/Problem 5 |Source]])
  
 
[[Category:Geometry]]
 
[[Category:Geometry]]

Revision as of 01:28, 30 August 2020

Isogonal conjugates are pairs of points in the plane with respect to a certain triangle.

Construction and Theorem

Let $P$ be a point in the plane, and let $ABC$ be a triangle. We will denote by $a,b,c$ the lines $BC, CA, AB$. Let $p_a, p_b, p_c$ denote the lines $PA$, $PB$, $PC$, respectively. Let $q_a$, $q_b$, $q_c$ be the reflections of $p_a$, $p_b$, $p_c$ over the angle bisectors of angles $A$, $B$, $C$, respectively. Then lines $q_a$, $q_b$, $q_c$ concur at a point $Q$, called the isogonal conjugate of $P$ with respect to triangle $ABC$.

Proof

By our constructions of the lines $q$, $\angle p_a b \equiv \angle q_a c$, and this statement remains true after permuting $a,b,c$. Therefore by the trigonometric form of Ceva's Theorem \[\frac{\sin \angle q_a b}{\sin \angle c q_a} \cdot \frac{\sin \angle q_b c}{\sin \angle a q_b} \cdot \frac{\sin \angle q_c a}{\sin \angle b q_c} = \frac{\sin \angle p_a c}{\sin \angle b p_a} \cdot \frac{\sin \angle p_b a}{\sin \angle c p_b} \cdot \frac{\sin \angle p_c b}{\sin \angle a p_c} = 1,\] so again by the trigonometric form of Ceva, the lines $q_a, q_b, q_c$ concur, as was to be proven. $\blacksquare$

Problems

Olympiad

Given a nonisosceles, nonright triangle $ABC,$ let $O$ denote the center of its circumscribed circle, and let $A_1, \, B_1,$ and $C_1$ be the midpoints of sides $BC, \, CA,$ and $AB,$ respectively. Point $A_2$ is located on the ray $OA_1$ so that $\triangle OAA_1$ is similar to $\triangle OA_2A$. Points $B_2$ and $C_2$ on rays $OB_1$ and $OC_1,$ respectively, are defined similarly. Prove that lines $AA_2, \, BB_2,$ and $CC_2$ are concurrent, i.e. these three lines intersect at a point. (Source)

Let $P$ be a given point inside quadrilateral $ABCD$. Points $Q_1$ and $Q_2$ are located within $ABCD$ such that $\angle Q_1 BC = \angle ABP$, $\angle Q_1 CB = \angle DCP$, $\angle Q_2 AD = \angle BAP$, $\angle Q_2 DA = \angle CDP$. Prove that $\overline{Q_1 Q_2} \parallel \overline{AB}$ if and only if $\overline{Q_1 Q_2} \parallel \overline{CD}$. (Source)