Difference between revisions of "Lucas' Theorem"

(Proof)
 
(11 intermediate revisions by 5 users not shown)
Line 1: Line 1:
Let <math>p</math> be a prime. If <math>(\overline{n_mn_{m-1}\cdots n_0})_p</math> is the base <math>p</math> representation of <math>n</math> and <math>(\overline{i_mi_{m-1}\cdots i_0})_p</math> is the base <math>p</math> representation of <math>i</math>, where <math>n\geq i</math>, '''Lucas' Theorem''' states that <cmath>\binom{n}{i}\equiv \prod_{j=0}^{m}\binom{n_j}{i_j}\pmod{p}</cmath>
+
'''Lucas' Theorem''' states that for any [[prime]] <math>p</math> and any [[positive integer]]s <math>n\geq i</math>, if <math>(\overline{n_mn_{m-1}\cdots n_0})_p</math> is the representation of <math>n</math> in [[base]] <math>p</math> and <math>(\overline{i_mi_{m-1}\cdots i_0})_p</math> is the representation of <math>i</math> in base <math>p</math> (possibly with some leading <math>0</math>s) then <math>\binom{n}{i}\equiv \prod_{j=0}^{m}\binom{n_j}{i_j}\pmod{p}</math>.
  
== Proof ==
+
== Lemma ==
=== Lemma ===
 
 
For <math>p</math> prime and <math>x,r\in\mathbb{Z}</math>,  
 
For <math>p</math> prime and <math>x,r\in\mathbb{Z}</math>,  
<cmath>(1+x)^{p^r}\equiv 1+x^{p^r}\pmod{p}</cmath>
+
<center><math>(1+x)^{p^r}\equiv 1+x^{p^r}\pmod{p}</math></center>
 
=== Proof ===
 
=== Proof ===
For all <math>1\leq k \leq p-1</math>, <math>\binom{p}{k}\equiv 0 \pmod{p}</math>. Then we have that <center><math>\begin{eqnarray*}(1+x)^p&\equiv &\binom{p}{0}+\binom{p}{1}x+\binom{p}{2}x^2+\cdots+\binom{p}{p-1}x^{p-1}+\binom{p}{p}x^p\\
+
For all <math>1\leq k \leq p-1</math>, <math>\binom{p}{k}\equiv 0 \pmod{p}</math>. Then we have
&\equiv& 1+x^p\pmod{p}\end{eqnarray*}</math></center> Assume we have <math>(1+x)^{p^k}\equiv 1+x^{p^k}\pmod{p}</math>. Then <center><math>\begin{eqnarray*}(1+x)^{p^{k+1}}
+
<cmath>\begin{eqnarray*}(1+x)^p&\equiv &\binom{p}{0}+\binom{p}{1}x+\binom{p}{2}x^2+\cdots+\binom{p}{p-1}x^{p-1}+\binom{p}{p}x^p\\
 +
&\equiv& 1+x^p\pmod{p}\end{eqnarray*}</cmath>
 +
Assume we have <math>(1+x)^{p^k}\equiv 1+x^{p^k}\pmod{p}</math>. Then
 +
<cmath>\begin{eqnarray*}(1+x)^{p^{k+1}}
 
&\equiv&\left((1+x)^{p^k}\right)^p\\
 
&\equiv&\left((1+x)^{p^k}\right)^p\\
 
&\equiv&\left(1+x^{p^k}\right)^p\\
 
&\equiv&\left(1+x^{p^k}\right)^p\\
 
&\equiv&\binom{p}{0}+\binom{p}{1}x^{p^k}+\binom{p}{2}x^{2p^k}+\cdots+\binom{p}{p-1}x^{(p-1)p^k}+\binom{p}{p}x^{p^{k+1}}\\
 
&\equiv&\binom{p}{0}+\binom{p}{1}x^{p^k}+\binom{p}{2}x^{2p^k}+\cdots+\binom{p}{p-1}x^{(p-1)p^k}+\binom{p}{p}x^{p^{k+1}}\\
&\equiv&1+x^{p^{k+1}}\pmod{p}\end{eqnarray*}</math></center>
+
&\equiv&1+x^{p^{k+1}}\pmod{p}\end{eqnarray*}</cmath>
 
 
== Links ==
 
  
 
== See also ==
 
== See also ==
 
 
* [[Combinatorics]]
 
* [[Combinatorics]]
 
* [[Generating function]]
 
* [[Generating function]]
 +
* [[Binomial Theorem]]
  
 
[[Category:Theorems]]
 
[[Category:Theorems]]
 +
[[Category:Number theory]]

Latest revision as of 15:13, 11 August 2020

Lucas' Theorem states that for any prime $p$ and any positive integers $n\geq i$, if $(\overline{n_mn_{m-1}\cdots n_0})_p$ is the representation of $n$ in base $p$ and $(\overline{i_mi_{m-1}\cdots i_0})_p$ is the representation of $i$ in base $p$ (possibly with some leading $0$s) then $\binom{n}{i}\equiv \prod_{j=0}^{m}\binom{n_j}{i_j}\pmod{p}$.

Lemma

For $p$ prime and $x,r\in\mathbb{Z}$,

$(1+x)^{p^r}\equiv 1+x^{p^r}\pmod{p}$

Proof

For all $1\leq k \leq p-1$, $\binom{p}{k}\equiv 0 \pmod{p}$. Then we have \begin{eqnarray*}(1+x)^p&\equiv &\binom{p}{0}+\binom{p}{1}x+\binom{p}{2}x^2+\cdots+\binom{p}{p-1}x^{p-1}+\binom{p}{p}x^p\\ &\equiv& 1+x^p\pmod{p}\end{eqnarray*} Assume we have $(1+x)^{p^k}\equiv 1+x^{p^k}\pmod{p}$. Then \begin{eqnarray*}(1+x)^{p^{k+1}} &\equiv&\left((1+x)^{p^k}\right)^p\\ &\equiv&\left(1+x^{p^k}\right)^p\\ &\equiv&\binom{p}{0}+\binom{p}{1}x^{p^k}+\binom{p}{2}x^{2p^k}+\cdots+\binom{p}{p-1}x^{(p-1)p^k}+\binom{p}{p}x^{p^{k+1}}\\ &\equiv&1+x^{p^{k+1}}\pmod{p}\end{eqnarray*}

See also