Difference between revisions of "Menelaus' Theorem"

Line 4: Line 4:
 
It is named for Menelaus of Alexandria.
 
It is named for Menelaus of Alexandria.
 
== Statement ==
 
== Statement ==
A necessary and sufficient condition for points <math>D, E, F</math> on the respective side lines <math>BC, CA, AB</math> of a triangle <math>ABC</math> to be collinear is that
+
A necessary and sufficient condition for points <math>P, Q, R</math> on the respective sides <math>BC, CA, AB</math> (or their extensions) of a triangle <math>ABC</math> to be collinear is that
  
<center><math>BD\cdot CE\cdot AF = -DC\cdot EA\cdot FB</math></center>
+
<center><math>BP\cdot CQ\cdot AR = -PC\cdot QA\cdot RB</math></center>
  
 
where all segments in the formula are [[directed segment]]s.
 
where all segments in the formula are [[directed segment]]s.
  
[[Image:Menelaus1.PNG|center]]
+
<center><asy>
 +
defaultpen(fontsize(8));
 +
pair A=(7,6), B=(0,0), C=(10,0), P=(4,0), Q=(6,8), R;
 +
draw((0,0)--(10,0)--(7,6)--(0,0),blue+0.75);
 +
draw((7,6)--(6,8)--(4,0));
 +
R=intersectionpoint(A--B,Q--P);
 +
dot(A^^B^^C^^P^^Q^^R);
 +
label("A",A,(1,1));label("B",B,(-1,0));label("C",C,(1,0));label("P",P,(0,-1));label("Q",Q,(1,0));label("R",R,(-1,1));
 +
</asy></center>
  
 +
== Proof ==
 +
Draw a line parallel to <math>QP</math> through <math>A</math> to intersect <math>BC</math> at <math>K</math>:
 +
<center><asy>
 +
defaultpen(fontsize(8));
 +
pair A=(7,6), B=(0,0), C=(10,0), P=(4,0), Q=(6,8), R, K=(5.5,0);
 +
draw((0,0)--(10,0)--(7,6)--(0,0),blue+0.75);
 +
draw((7,6)--(6,8)--(4,0));
 +
draw(A--K, dashed);
 +
R=intersectionpoint(A--B,Q--P);
 +
dot(A^^B^^C^^P^^Q^^R^^K);
 +
label("A",A,(1,1));label("B",B,(-1,0));label("C",C,(1,0));label("P",P,(0,-1));label("Q",Q,(1,0));label("R",R,(-1,1));
 +
label("K",K,(0,-1));
 +
</asy></center>
 +
<math>\triangle RBP \sim \triangle ABK \implies \frac{AR}{RB}=\frac{KP}{PB}</math>
 +
 +
<math>\triangle QCP \sim \triangle ACK \implies \frac{QC}{QA}=\frac{PC}{PK}</math>
 +
 +
Multiplying the two equalities together to eliminate the <math>PK</math> factor, we get:
 +
 +
<math>\frac{AR}{RB}\cdot\frac{QC}{QA}=\frac{PC}{PB}\implies \frac{AR}{RB}\cdot\frac{QC}{QA}\cdot\frac{PB}{PC}=1</math>
 
== See also ==
 
== See also ==
 
* [[Ceva's Theorem]]
 
* [[Ceva's Theorem]]

Revision as of 00:01, 11 March 2008

This article is a stub. Help us out by expanding it.

Menelaus' Theorem deals with the collinearity of points on each of the three sides (extended when necessary) of a triangle. It is named for Menelaus of Alexandria.

Statement

A necessary and sufficient condition for points $P, Q, R$ on the respective sides $BC, CA, AB$ (or their extensions) of a triangle $ABC$ to be collinear is that

$BP\cdot CQ\cdot AR = -PC\cdot QA\cdot RB$

where all segments in the formula are directed segments.

[asy] defaultpen(fontsize(8)); pair A=(7,6), B=(0,0), C=(10,0), P=(4,0), Q=(6,8), R; draw((0,0)--(10,0)--(7,6)--(0,0),blue+0.75); draw((7,6)--(6,8)--(4,0)); R=intersectionpoint(A--B,Q--P); dot(A^^B^^C^^P^^Q^^R); label("A",A,(1,1));label("B",B,(-1,0));label("C",C,(1,0));label("P",P,(0,-1));label("Q",Q,(1,0));label("R",R,(-1,1)); [/asy]

Proof

Draw a line parallel to $QP$ through $A$ to intersect $BC$ at $K$:

[asy] defaultpen(fontsize(8)); pair A=(7,6), B=(0,0), C=(10,0), P=(4,0), Q=(6,8), R, K=(5.5,0); draw((0,0)--(10,0)--(7,6)--(0,0),blue+0.75); draw((7,6)--(6,8)--(4,0)); draw(A--K, dashed); R=intersectionpoint(A--B,Q--P); dot(A^^B^^C^^P^^Q^^R^^K); label("A",A,(1,1));label("B",B,(-1,0));label("C",C,(1,0));label("P",P,(0,-1));label("Q",Q,(1,0));label("R",R,(-1,1)); label("K",K,(0,-1)); [/asy]

$\triangle RBP \sim \triangle ABK \implies \frac{AR}{RB}=\frac{KP}{PB}$

$\triangle QCP \sim \triangle ACK \implies \frac{QC}{QA}=\frac{PC}{PK}$

Multiplying the two equalities together to eliminate the $PK$ factor, we get:

$\frac{AR}{RB}\cdot\frac{QC}{QA}=\frac{PC}{PB}\implies \frac{AR}{RB}\cdot\frac{QC}{QA}\cdot\frac{PB}{PC}=1$

See also