Minkowski Inequality
Revision as of 15:49, 29 December 2021 by Etmetalakret (talk | contribs)
The Minkowski Inequality states that if are nonzero real numbers, then for any positive numbers
the following holds:
Notice that if either or
is zero, the inequality is equivalent to Hölder's Inequality.
Equivalence with the standard form
For , putting
and
, the symmetrical form given above becomes
![$\sum_{j=1}^{m}\biggl(\sum_{i=1}^{n}x_{ij}^p\biggr)^{1/p} \geq\left(\sum_{i=1}^{n}\biggl(\sum_{j=1}^{m}x_{ij}\biggr)^p\right)^{1/p}$](http://latex.artofproblemsolving.com/a/d/d/adddab5aa0b607e4222a3d6af63ef9c27b05fab9.png)
Putting and
, we get the form in which the Minkowski Inequality is given most often:
![$\biggl(\sum_{i=1}^{n}a_i^p\biggr)^{1/p}+ \biggl(\sum_{i=1}^{n}b_i^p\biggr)^{1/p} \geq\left(\sum_{i=1}^{n}\Bigl(a_i+b_i\Bigr)^p\right)^{1/p}$](http://latex.artofproblemsolving.com/4/5/f/45f54de6da54fe8ef65efd057f5f6b0daaff6d7b.png)
As the latter can be iterated, there is no loss of generality by putting .
Problems
This article is a stub. Help us out by expanding it.