Difference between revisions of "Pythagorean Inequality"

(See also)
(Redirected page to Pythagorean inequality)
(Tag: New redirect)
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
The Pythagorean Inequality is a generalization of the [[Pythagorean Theorem]]. The Theorem states that in a [[right triangle]] with sides of length <math>a \leq b \leq c</math> we have <math>a^2 + b^2 = c^2</math>.  The Inequality extends this to [[obtuse triangle| obtuse]] and [[acute triangle]]s. The inequality says:
#REDIRECT[[Pythagorean inequality]]
For an acute triangle with sides of length <math>a \leq b \leq c</math>, <math>a^2+b^2>c^2</math>. For an obtuse triangle with sides <math>a \leq b \leq c</math>, <math>a^2+b^2<c^2</math>.
This inequality is a direct result of the [[Law of Cosines]], although it is also possible to prove without using [[trigonometry]].
==See also==
* [[Triangle]]
* [[Law of Sines]]

Latest revision as of 10:08, 10 May 2021

Invalid username
Login to AoPS