Difference between revisions of "Sophie Germain Identity"

m (See Also)
(Add problem from imo 1969)
 
(One intermediate revision by one other user not shown)
Line 11: Line 11:
 
== Problems ==
 
== Problems ==
 
=== Introductory ===
 
=== Introductory ===
 +
*What is the remainder when <math>2^{202} +202</math> is divided by <math>2^{101}+2^{51}+1</math>? (2020 AMC10 B)
  
 
*Prove that if <math>n>1</math> then <math>n^4 + 4^n</math> is [[composite]]. (1978 Kurschak Competition)
 
*Prove that if <math>n>1</math> then <math>n^4 + 4^n</math> is [[composite]]. (1978 Kurschak Competition)
Line 22: Line 23:
  
 
*Find the largest prime factor of <math>13^4+16^5-172^2</math>, given that it is the product of three distinct primes. (ARML 2016 Individual #10)
 
*Find the largest prime factor of <math>13^4+16^5-172^2</math>, given that it is the product of three distinct primes. (ARML 2016 Individual #10)
 +
 +
*Prove that there exist infinite natural numbers <math>m</math> fulfilling the following property: For all natural numbers <math>n</math>, <math>n^4+m</math> is not a prime number. ([[1969 IMO Problems/Problem 1|IMO 1969 #1]])
  
 
== See Also ==
 
== See Also ==

Latest revision as of 15:04, 30 December 2023

The Sophie Germain Identity states that:

$a^4 + 4b^4 = (a^2 + 2b^2 + 2ab)(a^2 + 2b^2 - 2ab)$

One can prove this identity simply by multiplying out the right side and verifying that it equals the left. To derive the factoring, we begin by completing the square and then factor as a difference of squares:

\begin{align*} a^4 + 4b^4 &= a^4 + 4a^2b^2 + 4b^4 - 4a^2b^2 \\  &= (a^2 + 2b^2)^2 - (2ab)^2 \\ &= (a^2 + 2b^2 - 2ab) (a^2 + 2b^2 + 2ab) \end{align*}

Problems

Introductory

  • What is the remainder when $2^{202} +202$ is divided by $2^{101}+2^{51}+1$? (2020 AMC10 B)
  • Prove that if $n>1$ then $n^4 + 4^n$ is composite. (1978 Kurschak Competition)

Intermediate

  • Find the largest prime divisor of $5^4+4 \cdot 6^4$. (Mock AIME 5 2005-2006 Problems/Pro)
  • Calculate the value of $\dfrac{2014^4+4 \times 2013^4}{2013^2+4027^2}-\dfrac{2012^4+4 \times 2013^4}{2013^2+4025^2}$. (BMO 2013 #1)
  • Find the largest prime factor of $13^4+16^5-172^2$, given that it is the product of three distinct primes. (ARML 2016 Individual #10)
  • Prove that there exist infinite natural numbers $m$ fulfilling the following property: For all natural numbers $n$, $n^4+m$ is not a prime number. (IMO 1969 #1)

See Also