Feuerbach point lies on Radical axis

by TelvCohl, Jun 17, 2016, 11:22 AM

Theorem : Let $ I, $ $ G, $ $ L $ be the incenter, Centroid, de Longchamps point of $ \triangle ABC, $ respectively. Then the Feuerbach point $ F_e $ of $ \triangle ABC $ lies on the radical axis of $ \odot (ABC) $ and $ \odot (IGL). $

Proof : Let $ O, $ $ H, $ $ N $ be the circumcenter, orthocenter, 9-point center of $ \triangle ABC, $ respectively and let $ J $ be the image of $ I $ under the inversion WRT $ \odot (O). $ Since $ L $ is the image of $ G $ under the inversion WRT the circle $ \Gamma $ with diameter $ OH, $ so $ \Gamma $ and $ \odot (IGL) $ are orthogonal $ \Longrightarrow $ the second intersection $ V $ of $ IN $ and $ \odot (IGL) $ is the image of $ I $ under the inversion WRT $ \Gamma . $ From $$ \frac{OJ}{OI} = \frac{{R}^2}{{R}^2-2Rr} = \frac{R}{R-2r} = \frac{NF_e}{NI} \Longrightarrow JF_e \parallel OH, $$so $ \measuredangle IJF_e $ $ = $ $ \measuredangle ION $ $ = $ $ \measuredangle NVO $ $ \Longrightarrow $ the intersection $ K $ of $ JF_e, $ $ OV $ lies on $ \odot (IJV), $ hence from $ F_eJ $ $ \cdot $ $ F_eK $ $ = $ $ F_eI $ $ \cdot $ $ F_eV $ we know $ F_e $ lies on the radical axis of $ \odot (IGL), $ $ \odot (IJV). $ On the other hand, since $ \odot (O) $ and $ \odot (IJV) $ are orthogonal, so the radical axis of these two circles is the polar of $ O $ WRT $ \odot (IJV) $ which clearly passes through $ F_e, $ hence $ F_e $ is the radical center of $ \odot (O), $ $ \odot (IGL), $ $ \odot (IJV) $ $ \Longrightarrow $ $ F_e $ lies on the radical axis of $ \odot (ABC) $ and $ \odot (IGL). $

Comment

1 Comment

The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
做麻烦了,直接开世一行搞定

by duanby, Jan 17, 2023, 2:04 AM

Tags
About Owner
  • Posts: 2312
  • Joined: Oct 8, 2014
Blog Stats
  • Blog created: Jun 15, 2016
  • Total entries: 26
  • Total visits: 54238
  • Total comments: 5
Search Blog
a